Abstract

The knowledge of simple and relatively accurate closure equations for the drag coefficients of nonspherical particles is very important for Eulerian multiphase numerical codes that require such inputs for the solution of the momentum equation. However, the existing correlations for the drag coefficients are laden with high uncertainty, which propagates in the numerical results. This review paper examines critically the state of our knowledge of the drag coefficients of nonspherical particles starting with our understanding of the “size” and “shape” of particles. Lengthscales and other parameters that have been used to characterize sizes of nonspherical particles are presented. Shape factors and shape descriptors that have been used in past correlations are also presented together with an appraisal of their applicability. Several correlations that have been developed for the determination of the drag coefficients of nonspherical particles with regular and irregular shapes are also presented together with available information on their accuracy and applicability. Based on the review of the available correlations general recommendations are offered on the use of the correlations as closure equations and inputs in computatioal fluid dynamics (CFD) codes.

References

1.
Poisson
,
S. A.
,
1831
, “
Memoire Sur Les Mouvements Simultanes d' un Pendule et de L' Air Environenment
,”
Mem. de l' Acad. Des. Sci., Paris
,
9
, pp.
521
523
.
2.
Green
,
G.
,
1835
, “
Researches on the Vibration of Pendulums in Fluid Media
,”
Trans. R. Soc. Edinburgh
,
13
(
1
), pp.
54
62
.10.1017/S0080456800022183
3.
Stokes
,
G. G.
,
1845
, “
On the Theories of Internal Friction of the Fluids in Motion
,”
Trans. Cambridge Philos. Soc.
,
8
, pp.
287
319
.
4.
Stokes
,
G. G.
,
1851
, “
On the Effect of the Internal Friction of Fluids on the Motion of a Pendulum
,”
Trans. Cambridge Philos. Soc.
,
9
, pp.
8
106
.
5.
Boussinesq
,
V. J.
,
1885
, “
Sur la Resistance Qu' Oppose un Liquide Indéfini en Repos
,”
C. Rendu. Acad. Sci.
,
100
, pp.
935
937
.
6.
Boussinesq
,
V. J.
,
1885
,
Applications L'etude Des Potentiels
,
Blanchard
,
Paris
.
7.
Basset
,
A. B.
,
1888
,
Treatise on Hydrodynamics: With Numerous Examples
,
Bell
,
London
.
8.
Basset
,
A. B.
,
1888
, “
On the Motion of a Sphere in a Viscous Liquid
,”
Philos. Trans. R. Soc. London
,
179
, pp.
43
63
.
9.
Clift
,
R.
,
Grace
,
J. R.
, and
Weber
,
M. E.
,
1978
,
Bubbles, Drops and Particles
,
Academic Press
,
New York
.
10.
Michaelides
,
E. E.
,
2003
, “
Freeman Scholar Paper - Hydrodynamic Force and Heat/Mass Transfer From Particles, Bubbles and Drops
,”
ASME J. Fluids Eng.
,
125
(
2
), pp.
209
238
.10.1115/1.1537258
11.
Michaelides
,
E. E.
,
2006
,
Particles, Bubbles and Drops – Their Motion, Heat and Mass Transfer
,
World Scientific Publishers
,
NJ
.
12.
Balachandar
,
S.
, and
Michaelides
,
E. E.
,
2022
, “
Dispersed Multiphase Heat and Mass Transfer
,”
Annu. Rev. Heat Transfer
,
24
(
1
), pp.
173
215
.10.1615/AnnualRevHeatTransfer.2022042092
13.
Hilton
,
J. E.
, and
Cleary
,
P. W.
,
2011
, “
The Influence of Particle Shape on Flow Modes in Pneumatic Conveying
,”
Chem. Eng. Sci.
,
66
(
3
), pp.
231
240
.10.1016/j.ces.2010.09.034
14.
Michaelides
,
E. E.
,
1987
, “
Motion of Particles in Gases: Average Velocity and Pressure Loss
,”
ASME J. Fluids Eng.
,
109
(
2
), pp.
172
178
.10.1115/1.3242640
15.
Hilton
,
J. E.
,
Mason
,
L. R.
, and
Cleary
,
P. W.
,
2010
, “
Dynamics of Gas–Solid Fluidised Beds With Non-Spherical Particle Geometry
,”
Chem. Eng. Sci.
,
65
(
5
), pp.
1584
1596
.10.1016/j.ces.2009.10.028
16.
Concha
,
F.
, and
Bürger
,
R.
,
2002
, “
A Century of Research in Sedimentation and Thickening
,”
Kona
,
20
(
0
), pp.
38
70
.10.14356/kona.2002009
17.
Lenco
,
P. C.
,
Ramirez-Quintero
,
D. A.
, and
Bizzo
,
W. A.
,
2020
, “
Characterization of Sugarcane Bagasse Particles Separated by Elutriation for Energy Generation
,”
Renewable Energy
,
161
(
C
), pp.
712
721
.10.1016/j.renene.2020.06.046
18.
Cleinstreuer
,
C.
, and
Feng
,
Y.
,
2013
, “
Computational Analysis of Non-Spherical Particles Transport and Deposition in Shear Flow With Application to Lung Aerosol Dynamics – a Review
,”
ASME J. Biomed. Eng.
,
135
, p.
021008
.10.1115/1.4023236
19.
Clift
,
R.
, and
Gauvin
,
W. H.
,
1970
, “
The Motion of Particles in Turbulent Gas Streams
,”
Proc. CHEMECA.
,
1
, pp.
14
24
.
20.
Roos
,
F. W.
, and
Willmarth
,
W. W.
,
1971
, “
Some Experimental Results on Sphere and Disk Drag
,”
AIAA J.
,
9
(
2
), pp.
285
291
.10.2514/3.6164
21.
Achenbach
,
E.
,
1972
, “
Experiments on the Flow Past Spheres at Very High Reynolds Numbers
,”
J. Fluid Mech.
,
54
(
3
), pp.
565
575
.10.1017/S0022112072000874
22.
Feng
,
Z.-G.
, and
Michaelides
,
E. E.
,
2001
, “
Drag Coefficients of Viscous Spheres at Intermediate and High Reynolds Numbers
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
841
849
.10.1115/1.1412458
23.
Schiller
,
L.
, and
Nauman
,
A.
,
1933
, “
Uber Die Grundlegende Berechnung Bei Der Schwekraftaufbereitung
,”
Ver. Deutch Ing.
,
44
, pp.
318
320
.
24.
Dallavalle
,
J. M.
,
1943
,
Micrometrics: The Technology of Fine Particles
,
Pitman Publishing
,
New York
.
25.
Saffman
,
P. G.
,
1971
, “
On the Boundary Condition at the Surface of a Porous Medium
,”
Stud. Appl. Math.
,
50
(
2
), pp.
93
101
.10.1002/sapm197150293
26.
Jones
,
I. P.
,
1973
, “
Low Reynolds Number Flow Past a Porous Spherical Shell
,”
Proc. Cambridge Philos. Soc.
,
73
(
1
), pp.
231
238
.10.1017/S0305004100047642
27.
Feng
,
Z.-G.
, and
Michaelides
,
E. E.
,
1998
, “
Motion of a Permeable Sphere at Finite but Small Reynolds Numbers
,”
Phys. Fluids
,
10
(
6
), pp.
1375
1383
.10.1063/1.869662
28.
Barati
,
R.
,
Neyshabouri
,
S. A. A. S.
, and
Ahmadi
,
G.
,
2014
, “
Development of Empirical Models With High Accuracy for Estimation of Drag Coefficient of Flow Around a Smooth Sphere: An Evolutionary Approach
,”
Powder Technol.
,
257
, pp.
11
19
.10.1016/j.powtec.2014.02.045
29.
Kelbaliyev
,
G. I.
,
2011
, “
Drag Coefficients of Variously Shaped Solid Particles, Drops, and Bubbles
,”
Theor Found Chem. Eng.
,
45
(
3
), pp.
248
266
.10.1134/S0040579511020084
30.
Goosens
,
W. A.
,
2019
, “
Review of the Empirical Correlations for the Drag Coefficient of Rigid Spheres
,”
Powder Technol.
,
352
, pp.
350
359
.10.1016/j.powtec.2019.04.075
31.
Janke
,
N. C.
,
1966
, “
Effect of Shape Upon the Settling Velocity of Regular Convex Geometric Particles
,”
J. Sediment. Petrol.
,
36
(
2
), pp.
370
376
.10.1306/74D714C4-2B21-11D7-8648000102C1865D
32.
Flemming
,
N. C.
,
1965
, “
Form and Function of Sedimentary Particles
,”
J. Sedim. Petrol.
,
35
, pp.
381
390
.
33.
Mando
,
M.
, and
Rosendahl
,
L.
,
2010
, “
On the Motion of Non-Spherical Particles at High Reynolds Number
,”
Powder Technol.
,
202
(
1–3
), pp.
1
13
.10.1016/j.powtec.2010.05.001
34.
Cauchy
,
A.
,
1850
, “
Memoire Sur la Rectification Des Courbes et la Quadrature Des Surfaces Courbes
,”
Memoire Acad. Sci. Paris
,
22
.
35.
Rajapakse
,
R.
,
2016
,
Geotechnical Engineering Calculations and Rules of Thumb
, 2nd ed.,
Elsevier
,
Amsterdam, The Netherlands
.
36.
Allen
,
T.
,
1990
,
Particle Size Measurement
, 4th ed.,
Chapman & Hall
,
New York
.
37.
Krawczykowski
,
D.
,
Krawczykowska
,
A.
, and
Gawenda
,
T.
,
2022
, “
Comparison of Geometric Properties of Regular and Irregular Mineral Grains by Dynamic Image Analysis (2D) and Optoelectronic Analysis (3D) Methods
,”
Minerals
,
12
(
5
), p.
540
.10.3390/min12050540
38.
Wadell
,
H.
,
1933
, “
Sphericity and Roundness of Rock Particles
,”
J. Geol.
,
41
(
3
), pp.
310
331
.10.1086/624040
39.
Bullard
,
J. W.
, and
Garboczi
,
E. J.
,
2013
, “
Defining Shape Measures for 3D Star-Shaped Particles: Sphericity, Roundness, and Dimensions
,”
Powder Technol.
,
249
, pp.
241
252
.10.1016/j.powtec.2013.08.015
40.
Alger
,
G. R.
, and
Simons
,
D. B.
,
1968
, “
Fall Velocity of Irregular Shaped Particles
,”
J. Hydraul. Div., Am. Soc. Civ. Eng.
,
94
(
3
), pp.
721
738
.10.1061/JYCEAJ.0001814
41.
Göğüş
,
M.
,
İpekç
,
O. N.
, and
Kökpinar
,
M. A.
,
2001
, “
Effect of Particle Shape on Fall Velocity of Angular Particles
,”
J. Hydraul. Eng.
,
127
(
10
), pp.
860
869
.10.1061/(ASCE)0733-9429(2001)127:10(860)
42.
Dioguardi
,
F.
, and
Mele
,
D.
,
2015
, “
A New Shape Dependent Drag Correlation Formula for Non-Spherical Rough Particles. Experiments and Results
,”
Powder Technol.
,
277
, pp.
222
230
.10.1016/j.powtec.2015.02.062
43.
Angelidakis
,
V.
,
Nadimi
,
S.
, and
Utili
,
S.
,
2022
, “
Elongation, Flatness and Compactness Indices to Characterise Particle Form
,”
Powder Technol.
,
396
, pp.
689
695
.10.1016/j.powtec.2021.11.027
44.
Potticary
,
M.
,
Zervos
,
A.
, and
Harkness
,
J.
,
2015
, “
An Investigation Into the Effect of Particle Platyness on the Strength of Granular Materials Using the Discrete Element Method
,”
Proceedings of IV International Conference on Particle-Based Methods
, CIMNE, Barcelona, Sept. 28–30, pp.
767
778
.
45.
Kong
,
D.
, and
Fonseca
,
J.
,
2018
, “
Quantification of the Morphology of Shelly Carbonate Sands Using 3D Images
,”
Géotechnique
,
68
(
3
), pp.
249
261
.10.1680/jgeot.16.P.278
46.
Bagi
,
K.
, and
Orosz
,
A.
,
2020
, “
A New Variable for Characterising Irregular Element Geometries in Experiments and DEM Simulations
,”
Proc. Eur. Council Modell. Simul. (ECMS)
,
34
(
1
), pp.
256
260
.
47.
Heywood
,
H.
,
1962
, “
Uniform and Non-Uniform Motion of Particles in Fluids
,”
Symposium on the Interaction Fluids and Particles, Institution of Chemical Engineers
, London, June 20–22, pp.
1
9
.
48.
Thompson
,
T. L.
, and
Clark
,
N. N.
,
1991
, “
A Holistic Approach to Particle Drag Prediction
,”
Powder Technol.
,
67
(
1
), pp.
57
66
.10.1016/0032-5910(91)80026-F
49.
Sukumaran
,
B.
, and
Ashmawy
,
A. K.
,
2001
, “
Quantitative Characterization of the Geometry of Discrete Particles
,”
Geo-technique
,
51
(
7
), pp.
619
627
.10.1680/geot.2001.51.7.619
50.
Oakey
,
R. J.
,
Green
,
M.
,
Carling
,
P. A.
,
Lee
,
M. W. E.
,
Sear
,
D. A.
, and
Warburton
,
J.
,
2005
, “
Grain-Shape Analysis – a New Method for Determining Representative Particle Shapes for Populations of Natural Grains
,”
J. Sediment Res.
,
75
(
6
), pp.
1065
1073
.10.2110/jsr.2005.079
51.
Rosendahl
,
L.
,
2000
, “
Using a Multi-Parameter Particle Shape Description to Predict the Motion of Non-Spherical Particle Shapes in Swirling Flow
,”
Appl. Math. Modell.
,
24
(
1
), pp.
11
25
.10.1016/S0307-904X(99)00023-2
52.
Bagheri
,
G. H.
,
Bonadonna
,
C.
,
Manzella
,
I.
, and
Vonlanthen
,
P.
,
2015
, “
On the Characterization of Size and Shape of Irregular Particles
,”
Powder Technol.
,
270
, pp.
141
153
.10.1016/j.powtec.2014.10.015
53.
Blott
,
S. J.
, and
Pye
,
K.
,
2008
, “
Particle Shape: A Review and New Methods of Characterization and Classification
,”
Sedimentology
,
55
, pp.
31
63
.
54.
Pettyjohn
,
E. S.
, and
Christiansen
,
E. R.
,
1948
, “
Effect of Particle Shape on Free-Settling Rates of Isometric Particles
,”
Chem. Eng. Prog.
,
44
, pp.
157
172
.
55.
Ladenburg
,
R.
,
1907
, “
Über Den Einfluß Von Wänden Auf Die Bewegung Einer Kugel in Einer Reibenden Flüssigkeit
,”
Annalen Der Phys.
,
328
(
8
), pp.
447
458
.10.1002/andp.19073280806
56.
Faxen
,
H.
,
1922
, “
Der Widerstand Gegen Die Bewegung Einer Starren Kugel in Einer Zum Den Flussigkeit, Die Zwischen Zwei Parallelen Ebenen Winden Eingeschlossen Ist
,”
Annalen Der Phys.
,
373
(
10
), pp.
89
119
.10.1002/andp.19223731003
57.
Leith
,
D.
,
1987
, “
Drag on Nonspherical Objects
,”
Aerosol Sci. Technol.
,
6
(
2
), pp.
153
161
.10.1080/02786828708959128
58.
Haider
,
A.
, and
Levenspiel
,
O.
,
1989
, “
Drag Coefficient and Terminal Velocity of Spherical and Non-Spherical Particles
,”
Powder Technol.
,
58
(
1
), pp.
63
70
.10.1016/0032-5910(89)80008-7
59.
Ganser
,
G. H.
,
1993
, “
A Rational Approach to Drag Prediction of Spherical and Non-Spherical Particles
,”
Powder Technol.
,
77
(
2
), pp.
143
152
.10.1016/0032-5910(93)80051-B
60.
Mandelbrot
,
B. B.
,
1967
, “
How Long is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension
,”
Science
,
156
(
3775
), pp.
636
638
.10.1126/science.156.3775.636
61.
Michaelides
,
E. E.
,
2014
,
Nanofluidics – Thermodynamic and Transport Properties
,
Springer
,
Heidelberg
.
62.
Wang
,
W.
, and
Chau
,
Y.
,
2009
, “
Self-Assembled Peptide Nanorods as Building Blocks of Fractal Patterns
,”
Soft Matter
,
5
(
24
), pp.
4893
4898
.10.1039/b919782f
63.
Bushell
,
G. C.
,
Yan
,
Y. D.
,
Woodfield
,
D.
,
Raper
,
J.
, and
Amal
,
R.
,
2002
, “
On Techniques for the Measurement of the Mass Fractal Dimension of Aggregates
,”
Adv. Colloid Interface Sci.
,
95
(
1
), pp.
1
50
.10.1016/S0001-8686(00)00078-6
64.
Vicsek
,
T.
,
1999
,
Fractal Growth Phenomena
, 2nd ed.,
World Scientific
,
Singapore
.
65.
Oseen
,
C. W.
,
1915
, “
Uber Den Wiederstand Gegen Die Gleichmassige Translation Eines Ellipsoides in Einer Reibenden Flussigkeit
,”
Arch. Math. Phys.
,
24
, pp.
108
114
.
66.
Breach
,
D. R.
,
1961
, “
Slow Flow Past Ellipsoids of Revolution
,”
J. Fluid Mech.
,
10
(
02
), pp.
306
314
.10.1017/S0022112061000251
67.
Tchen
,
C. M.
,
1954
, “
Motion of Small Particles in Skew Shape Suspended in a Viscous Liquid
,”
J. Appl. Phys.
,
25
(
4
), pp.
463
473
.10.1063/1.1721663
68.
Batchelor
,
G. K.
,
1970
, “
The Stress System in a Suspension of Force-Free Particles
,”
J. Fluid. Mech.
,
41
(
3
), pp.
545
570
.10.1017/S0022112070000745
69.
Schmiedel
,
J.
,
1928
, “
Experimentelle Untersuchungen Uber Die Fallbewegung Von Kugeln Und Scheiben in Reibenden Flussigkeiten
,”
Physikalische Z.
,
29
(
17
), pp.
593
610
.
70.
Squires
,
L.
, and
Squires
,
W.
,
1937
, “
The Sedimentation of Thin Discs
,”
Trans. Am. Inst. Chem. Eng.
,
33
, pp.
1
11
.
71.
Willmarth
,
W. W.
,
Hawk
,
N. E.
, and
Harvey
,
R. L.
,
1964
, “
Steady and Unsteady Motions and Wakes of Freely Falling Disks
,”
Phys. Fluids
,
7
(
2
), pp.
197
208
.10.1063/1.1711133
72.
Lasso
,
I. A.
, and
Weidman
,
P. D.
,
1986
, “
Stokes Drag on Hollow Cylinders and Conglomerates
,”
Phys. Fluids
,
29
(
12
), pp.
3921
3934
.10.1063/1.865732
73.
Krueger
,
B.
,
Wirtz
,
S.
, and
Scherer
,
V.
,
2015
, “
Measurement of Drag Coefficients of Non-Spherical Particles With a Camera-Based Method
,”
Powder Technol.
,
278
, pp.
157
170
.10.1016/j.powtec.2015.03.024
74.
Tran Cong
,
S.
,
Gay
,
M.
, and
Michaelides
,
E. E.
,
2004
, “
Drag Coefficients of Irregularly Shaped Particles
,”
Powder Technol.
,
139
(
1
), pp.
21
32
.10.1016/j.powtec.2003.10.002
75.
Rodrigue
,
D.
,
Chhabra
,
R. P.
, and
de Kee
,
D.
,
1994
, “
Drag on Non-Spherical Particles in Non-Newtonian Fluids
,”
Can. J. Chem. Eng.
,
72
(
4
), pp.
588
593
.10.1002/cjce.5450720406
76.
Venu Madhav
,
G.
, and
Chhabra
,
R. P.
,
1995
, “
Drag on Non-Spherical Particles in Viscous Fluids
,”
Int. J. Min Process.
,
43
(
1–2
), pp.
15
29
.10.1016/0301-7516(94)00038-2
77.
Peskin
,
C. S.
,
1977
, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys.
,
25
(
3
), pp.
220
252
.10.1016/0021-9991(77)90100-0
78.
Peskin
,
C. S.
,
2002
, “
The Immersed Boundary Method
,”
Acta Numerica
,
11
, pp.
479
517
.10.1017/S0962492902000077
79.
Feng
,
Z.-G.
, and
Michaelides
,
E. E.
,
2004
, “
An Immersed Boundary Method Combined With Lattice Boltzmann Method for Solving Fluid–Particles Interaction Problems
,”
J. Comput. Phys.
,
195
(
2
), pp.
602
628
.10.1016/j.jcp.2003.10.013
80.
Feng
,
Z.-G.
, and
Michaelides
,
E. E.
,
2005
, “
Proteus: A Direct Forcing Method in the Simulation of Particulate Flows
,”
J. Comput. Phys.
,
202
(
1
), pp.
20
51
.10.1016/j.jcp.2004.06.020
81.
Frisch
,
U.
,
Hasslacher
,
B.
, and
Pomeau
,
Y.
,
1986
, “
Lattice-Gas Automata for the Navier-Stokes Equations
,”
Phys. Rev. Lett.
,
56
(
14
), pp.
1505
1508
.10.1103/PhysRevLett.56.1505
82.
Ladd
,
A. J. C.
,
1994
, “
Numerical Simulations of Particulate Suspensions Via a Discretized Boltzmann Equation. Part 1. Theoretical Foundation
,”
J. Fluid Mech.
,
271
, pp.
285
309
.10.1017/S0022112094001771
83.
Aidun
,
C. K.
, and
Lu
,
Y.
,
1995
, “
Lattice Boltzmann Simulation of Solid Particles Suspended in Fluid
,”
J. Statist. Phys.
,
81
(
1–2
), pp.
49
61
.10.1007/BF02179967
84.
Lv
,
K.
,
Min
,
F.
,
Zhu
,
J.
,
Ren
,
B.
,
Bai
,
X.
, and
Wang
,
C.
,
2021
, “
Experiments and CFD-DEM Simulations of Fine Kaolinite Particle Sedimentation Dynamic Characteristics in a Water Environment
,”
Powder Technol.
,
382
, pp.
60
69
.10.1016/j.powtec.2020.12.057
85.
Hill
,
R.
, and
Power
,
G.
,
1956
, “
Extremum Principles for Slow Viscous Flow and the Approximate Calculation of Drag
,”
Q. J. Mech. Appl. Math.
,
9
(
3
), pp.
313
319
.10.1093/qjmam/9.3.313
86.
Keller
,
J. B.
,
Rubenfeld
,
L. A.
, and
Molyneux
,
J. E.
,
1967
, “
Extremum Principles for Slow Viscous Flows With Applications to Suspensions
,”
J. Fluid Mech.
,
30
(
1
), pp.
97
125
.10.1017/S0022112067001326
87.
Achenbach
,
E.
,
1974
, “
The Effects of Surface Roughness and Tunnel Blockage on the Flow Past Spheres
,”
J. Fluid Mech.
,
65
(
1
), pp.
113
125
.10.1017/S0022112074001285
88.
Achenbach
,
E.
,
1971
, “
Influence of Surface Roughness on the Cross-Flow Around a Circular Cylinder
,”
J. Fluid Mech.
,
46
(
2
), pp.
321
335
.10.1017/S0022112071000569
89.
Nakamura
,
Y.
, and
Tomonari
,
Y.
,
1982
, “
The Effects of Surface Roughness on the Flow Past Circular Cylinders at High Reynolds Numbers
,”
J. Fluid Mech.
,
123
, pp.
363
378
.10.1017/S0022112082003103
90.
Munson
,
B. R.
,
Okiishi
,
T. H.
,
Rothmayer
,
A. P.
, and
Huebsch
,
W. W.
,
2014
,
Fundamentals of Fluid Mechanics
,
Wiley
, New York.
91.
Jeffery
,
G. B.
,
1922
, “
The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid
,”
Proc. R. Soc. London. Ser. A
,
102
, pp.
161
179
.
92.
Gallily
,
I.
, and
Cohen
,
A. H.
,
1979
, “
On the Orderly Nature of the Motion of Non-Spherical Aerosol Particles: II. Inertial Collision Between a Spherical Large Droplet and an Axially Symmetrical Elongated Particle
,”
J. Colloid Interface Sci.
,
68
(
2
), pp.
338
356
.10.1016/0021-9797(79)90287-X
93.
Mortensen
,
P. H.
,
Andersson
,
H. I.
,
Gillissen
,
J. J. J.
, and
Boersma
,
B. J.
,
2008
, “
Dynamics of Prolate Ellipsoidal Particles in a Turbulent Channel Flow
,”
Phys. Fluids
,
20
(
9
), p.
093302
.10.1063/1.2975209
94.
Huang
,
H.
,
Yang
,
X.
,
Krafczyk
,
M.
, and
Lu
,
X.-Y.
,
2012
, “
Rotation of Spheroidal Particles in Couette Flows
,”
J. Fluid Mech.
,
692
, pp.
369
394
.10.1017/jfm.2011.519
95.
White
,
F. M.
,
1982
,
Fluid Mechanics
, 4th ed.,
McGraw-Hill
,
New York
.
96.
Brenner
,
H.
,
1963
, “
The Stokes Resistance of an Arbitrary Particle
,”
Chem. Eng. Sci.
,
18
(
1
), pp.
1
25
.10.1016/0009-2509(63)80001-9
97.
Happel
,
J.
, and
Brenner
,
H.
,
1986
,
Low Reynolds Number Hydrodynamics
,
Martinus Nijhoff
,
Washington, DC
.
98.
Militzer
,
J.
,
Kan
,
J. M.
,
Hamdullahpur
,
F.
,
Amyotte
,
P. R.
, and
Al Taweel
, and
A. M.
,
1989
, “
Drag Coefficient for Axisymmetric Flow Around Individual Spheroidal Particles
,”
Powder Technol.
,
57
(
3
), pp.
193
195
.10.1016/0032-5910(89)80075-0
99.
Masliyah
,
J. H.
, and
Epstein
,
N.
,
1970
, “
Numerical Study of Steady Flow Past Spheroids
,”
J. Fluid Mech.
,
44
(
3
), pp.
493
512
.10.1017/S0022112070001957
100.
Pitter
,
R. L.
,
Pruppacher
,
H. R.
, and
Hamielec
,
A. E.
,
1973
, “
A Numerical Study of Viscous Flow Past a Thin Oblate Spheroid at Low and Intermediate Reynolds Numbers
,”
J. Atmos Sci.
,
30
(
1
), pp.
125
134
.10.1175/1520-0469(1973)030<0125:ANSOVF>2.0.CO;2
101.
Comer
,
J. K.
, and
Kleinstreuer
,
C.
,
1995
, “
A Numerical Investigation of Laminar Flow Past Non-Spherical Solids and Droplets
,”
ASME J. Fluids Eng.
,
117
(
1
), pp.
170
175
.10.1115/1.2816807
102.
Dwyer
,
H. A.
, and
Dandy
,
D. S.
,
1990
, “
Some Influences of Particle Shape on Drag and Heat Transfer
,”
Phys. Fluids A
,
2
(
12
), pp.
2110
2118
.10.1063/1.857797
103.
Xu
,
Q.
, and
Michaelides
,
E. E.
,
1996
, “
A Numerical Study of the Flow Over Ellipsoidal Objects Inside a Cylindrical Tube
,”
Int. J. Numer. Methods Fluids
,
22
(
11
), pp.
1075
1087
.10.1002/(SICI)1097-0363(19960615)22:11<1075::AID-FLD396>3.0.CO;2-4
104.
Fan
,
F.-G.
, and
Ahmadi
,
G.
,
1995
, “
Dispersion of Ellipsoidal Particles in an Isotropic Pseudo-Turbulent Flow Field
,”
ASME J. Fluids Eng.
,
117
(
1
), pp.
154
161
.10.1115/1.2816805
105.
Yin
,
C.
,
Rosendahl
,
L.
,
Knudsen Kær
,
S.
, and
Sørensen
,
H.
,
2003
, “
Modelling the Motion of Cylindrical Particles in a Non-Uniform Flow
,”
Chem. Eng. Sci.
,
58
(
15
), pp.
3489
3498
.10.1016/S0009-2509(03)00214-8
106.
Hölzer
,
A.
, and
Sommerfeld
,
M.
,
2009
, “
Lattice Boltzmann Simulations to Determine Drag, Lift and Torque Acting on Non-Spherical Particles
,”
Comput. Fluids
,
38
(
3
), pp.
572
589
.10.1016/j.compfluid.2008.06.001
107.
Zastawny
,
M.
,
Mallouppas
,
G.
,
Zhao
,
F.
, and
van Wachem
,
B.
,
2012
, “
Derivation of Drag and Lift Force and Torque Coefficients for Non-Spherical Particles in Flows
,”
Int. J. Multiphase Flow
,
39
, pp.
227
239
.10.1016/j.ijmultiphaseflow.2011.09.004
108.
Happel
,
J.
, and
Brenner
,
H.
,
1983
,
Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, 1
,
Springer Science & Business Media
, Heidelberg.
109.
Richter
,
A.
, and
Nikrityuk
,
P. A.
,
2012
, “
Drag Forces and Heat Transfer Coefficients for Spherical, Cuboidal and Ellipsoidal Particles in Cross Flow at Sub-Critical Reynolds Numbers
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1343
1354
.10.1016/j.ijheatmasstransfer.2011.09.005
110.
Richter
,
A.
, and
Nikrityuk
,
P. A.
,
2013
, “
New Correlations for Heat and Fluid Flow Past Ellipsoidal and Cubic Particles at Different Angles of Attack
,”
Powder Technol.
,
249
, pp.
463
474
.10.1016/j.powtec.2013.08.044
111.
Ouchene
,
R.
,
Khalij
,
R.
,
Arcen
,
B.
, and
Taniere
,
A.
,
2016
, “
A New Set of Correlations of Drag, Lift and Torque Coefficients for Non-Spherical Particles and Large Reynolds Numbers
,”
Powder Technol.
,
303
, pp.
33
43
.10.1016/j.powtec.2016.07.067
112.
Ouchene
,
R.
,
2020
, “
Numerical Simulation and Modeling of the Hydrodynamic Forces and Torque Acting on Individual Oblate Spheroids
,”
Phys. Fluids
,
32
(
7
), p.
073303
.10.1063/5.0011618
113.
Sanjeevi
,
S. K. P.
, and
Padding
,
J. T.
,
2017
, “
On the Orientational Dependence of Drag Experienced by Spheroids
,”
J. Fluid Mech.
,
820
(
R1
), pp.
1
13
.10.1017/jfm.2017.239
114.
Sanjeevi
,
S. K. P.
,
Kuipers
,
J. A. M.
, and
Padding
,
J. T.
,
2018
, “
Drag, Lift and Torque Correlations for Non-Spherical Particles From Stokes Limit to High Reynolds Numbers
,”
Int. J. Multiphase Flow
,
106
, pp.
325
337
.10.1016/j.ijmultiphaseflow.2018.05.011
115.
Ke
,
C.
,
Shu
,
S.
,
Zhang
,
H.
,
Yuan
,
H.
, and
Yang
,
D.
,
2018
, “
On the Drag Coefficient and Averaged Nusselt Number of an Ellipsoidal Particle in a Fluid
,”
Powder Technol.
,
325
, pp.
134
144
.10.1016/j.powtec.2017.10.049
116.
Zhang
,
H.
,
Xiong
,
B.
,
An
,
X.
,
Ke
,
C.
, and
Wei
,
G.
,
2019
, “
Prediction on the Drag Force and Heat Transfer of Spheroids in Supercritical Water: A PR-DNS Study
,”
Powder Technol.
,
342
, pp.
99
107
.10.1016/j.powtec.2018.09.051
117.
Fr¨ohlich
,
K.
,
Matthias
,
M.
, and
Schr¨oder
,
W.
,
2020
, “
Correlations for Inclined Prolates Based on Highly Resolved Simulations
,”
J. Fluid Mech.
,
901
, p.
A5
.10.1017/jfm.2020.482
118.
He
,
L.
,
Tafti
,
D. K.
, and
Nagendra
,
K.
,
2017
, “
Evaluation of Drag Correlations Using Particle Resolved Simulations of Spheres and Ellipsoids in Assembly
,”
Powder Technol.
,
313
, pp.
332
343
.10.1016/j.powtec.2017.03.020
119.
Chen
,
Y.
,
Jiang
,
P.
,
Xiong
,
T.
,
Wei
,
W.
,
Fang
,
Z.
, and
Wang
,
B.
,
2021
, “
Drag and Heat Transfer Coefficients for Axisymmetric Non-Spherical Particles: A LBM Study
,”
Chem. Eng. J.
,
424
, p.
130391
.10.1016/j.cej.2021.130391
120.
Dennis
,
S. C. R.
, and
Chang
,
G. Z.
,
1970
, “
Numerical Solutions for Steady Flow Past a Circular Cylinder at Reynolds Numbers Up to 100
,”
J. Fluid Mech.
,
42
(
3
), pp.
471
489
.10.1017/S0022112070001428
121.
Taneda
,
S.
,
1956
, “
Experimental Investigation of the Wake Behind a Sphere at Low Reynolds Numbers
,”
J. Phys. Soc. Jpn.
,
11
(
10
), pp.
1104
1108
.10.1143/JPSJ.11.1104
122.
Achenbach
,
E.
,
1968
, “
Experiments on the Flow Past Cylinders
,”
J. Fluid Mech.
,
34
(
4
), pp.
625
639
.10.1017/S0022112068002120
123.
Son
,
J. S.
, and
Hanratty
,
T. J.
,
1969
, “
Velocity Gradients at the Wall for Flow Around a Cylinder at Reynolds Numbers From 5x103 to 105
,”
J. Fluid Mech.
,
35
(
2
), pp.
353
368
.10.1017/S0022112069001157
124.
Marchildon
,
E. K.
,
Clamen
,
A.
, and
Gauvin
,
W. H.
,
1964
, “
Drag and Oscillatory Motion of Freely Falling Cylindrical Particles
,”
Can. J. Chem. Eng.
,
42
(
4
), pp.
178
182
.10.1002/cjce.5450420410
125.
Achenbach
,
E.
,
1977
, “
The Effect of Surface Roughness on the Heat Transfer From a Circular Cylinder to the Cross Flow of Air
,”
Int. J. Heat Mass Transfer
,
20
(
4
), pp.
359
369
.10.1016/0017-9310(77)90157-0
126.
Zukauskas
,
A.
,
Ziugzda
,
J.
, and
Daujotas
,
P.
,
1978
, “
Effect of Turbulence on the Heat Transfer From a Rough-Surface Cylinder in Cross Flow in the Critical Range of Re
,”
Proceedings of 6th International Heat Transfer Conference
, Vol.
4
, Toronto, Canada, Aug. 5–11, pp.
231
236.
127.
Zukauskas
,
A.
, and
Ziugzda
,
J.
,
1985
,
Heat Transfer of a Cylinder in Crossflow
,
Hemisphere
,
Washington, DC
.
128.
Chang
,
Y.
,
Michaelides
,
E. E.
, and
Bosworth
,
R. T.
,
1986
, “
Heat Transfer Coefficients and Friction Factors for Banks of Flexible Vibrating Tubes in Cross-Flow
,”
Proceedings of 8th International Heat Transfer Conference
, Vol. 6, San Francisco, CA, Aug. 2–8, pp.
2757
2765
.
129.
Chang
,
Y.
,
Beris
,
A. N.
, and
Michaelides
,
E. E.
,
1989
, “
A Numerical Study of Heat and Momentum Transfer for Flexible Tube Bundles in Cross Flow
,”
Int. J. Heat Mass Transfer
,
32
, p.
2027
.
130.
Devnin
,
S. I.
,
1967
,
Fluid Dynamics Predictions for the Construction of Non-Slender Ships
,”
Sudostroyenye
,
Leningrad
(in Russian).
131.
Lamb
,
H.
,
1945
,
Hydrodynamics
, 6th ed.,
Dover Publications
,
New York
.
132.
Finn
,
R.
,
1953
, “
Determination of the Drag on a Cylinder at Low Reynolds Numbers
,”
J. Appl. Phys.
,
24
(
6
), pp.
771
773
.10.1063/1.1721373
133.
Ta
,
P. L.
,
1975
, “
Etude Numerique de L'ecoulement D'un Fluide Visqueux Incompressible Autour D'un Cylindre Fixe ou en Rotation EFFET Magnus
,”
J. Mec.
,
14
, p.
109
.
134.
Pruppacher
,
H. R.
,
Clair
,
B. P. L.
, and
Hamielec
,
A. E.
,
1970
, “
Some Relations Between Drag and Flow Pattern of Viscous Flow Past a Sphere and a Cylinder at Low and Intermediate Reynolds Numbers
,”
J. Fluid Mech.
,
44
(
04
), pp.
781
790
.10.1017/S0022112070002148
135.
Inthavong
,
K.
,
Wen
,
J.
,
Tian
,
Z.
, and
Tu
,
J.
,
2008
, “
Numerical Study of Fibre Deposition in a Human Nasal Cavity
,”
Aerosol Sci.
,
39
(
3
), pp.
253
265
.10.1016/j.jaerosci.2007.11.007
136.
Fan
,
L.
,
Mao
,
Z. S.
, and
Yang
,
C.
,
2004
, “
Experiment on Sedimentation of Slender Particles With Large Aspect Ratio and Correlation of Drag Coefficient
,”
J. Ind. Eng. Chem. Res.
,
43
(
23
), pp.
7664
7670
.10.1021/ie049479k
137.
Chow
,
A.
,
Adams
,
E. E.
,
Israelsson
,
P. H.
, and
Tsouris
,
C.
,
2009
, “
Carbon Dioxide Hydrate Particles for Ocean Carbon Sequestration
,”
Energy Procedia
,
1
(
1
), pp.
4937
4944
.10.1016/j.egypro.2009.02.325
138.
Chow
,
A. C.
, and
Adams
,
E. E.
,
2011
, “
Prediction of Drag Coefficient and Secondary Motion of Free-Falling Rigid Cylindrical Particles With and Without Curvature at Moderate Reynolds Number
,”
J. Hydraul. Eng.
,
137
(
11
), pp.
1406
1414
.10.1061/(ASCE)HY.1943-7900.0000437
139.
Vakil
,
A.
, and
Green
,
S. I.
,
2009
, “
Drag and Lift Coefficients of Inclined Finite Circular Cylinders at Moderate Reynolds Numbers
,”
Comput. Fluids
,
38
(
9
), pp.
1771
1781
.10.1016/j.compfluid.2009.03.006
140.
Jayaweera
,
K. O. L.
, and
Mason
,
B. J.
,
1965
, “
The Behavior of Freely Falling Cylinders and Cones in a Viscous Fluid
,”
J. Fluid Mech.
,
22
(
04
), pp.
709
720
.10.1017/S002211206500109X
141.
Jayaweera
,
K. O. L.
, and
Cottis
,
R. E.
,
1969
, “
Fall Velocities of Plate-Like and Columnar Ice Crystals
,”
J. R. Meteorol. Soc.
,
95
(
406
), pp.
703
709
.10.1002/qj.49709540604
142.
Isaacs
,
J. L.
, and
Thodos
,
G.
,
1967
, “
The Free-Settling of Solid Cylindrical Particles in the Turbulent Regime
,”
Can. J. Chem. Eng.
,
45
(
3
), pp.
150
155
.10.1002/cjce.5450450306
143.
Coulson
,
J. M.
, and
Richardson
,
J. F.
,
1977
,
Chemical Engineering
,
2
,
Pergamon Press
,
Oxford
.
144.
Tek
,
M. R.
, and
Wilkes
,
J. O.
,
1974
,
Fluid Flow and Heat Transfer
,
University of Michigan
”,
Ann Arbor, MI
.
145.
Gabitto
,
J.
, and
Tsouris
,
C.
,
2008
, “
Drag Coefficient and Settling Velocity for Particles of Cylindrical Shape
,”
Powder Technol.
,
183
(
2
), pp.
314
322
.10.1016/j.powtec.2007.07.031
146.
Stringham
,
G. E.
,
Simons
,
D. B.
, and
Guy
,
H. P.
,
1969
, “
The Behavior of Large Particles Falling in Quiescent Liquids, United States Geological Survey Professional Paper
,” pp. C1–C36, Report No. 562-C.
147.
Maxey
,
M. R.
, and
Riley
,
J. J.
,
1983
, “
Equation of Motion of a Small Rigid Sphere in a Non-Uniform Flow
,”
Phys. Fluids
,
26
(
4
), pp.
883
889
.10.1063/1.864230
148.
Michaelides
,
E. E.
, and
Roig
,
A.
,
2011
, “
A Reinterpretation of the Odar and Hamilton Data on the Unsteady Equation of Motion of Particles
,”
AIChE. J.
,
57
(
11
), pp.
2997
3002
.10.1002/aic.12498
149.
Christiansen
,
E. B.
, and
Barker
,
D. H.
,
1965
, “
Effect of Shape and Density on Free Settling of Particles at High Reynolds Number
,”
AICHE J.
,
11
(
1
), pp.
145
151
.10.1002/aic.690110130
150.
Zhou
,
C.
,
Su
,
J.
,
Chen
,
H.
, and
Shi
,
Z.
,
2022
, “
Terminal Velocity and Drag Coefficient Models for Disc-Shaped Particles Based on the Imaging Experiment
,”
Powder Technol. 2022
,
398
, p.
117062
.10.1016/j.powtec.2021.117062
151.
Mckay
,
G.
,
Murphy
,
W. R.
, and
Hillis
,
M.
,
1988
, “
Settling Characteristics of Disks and Cylinders
,”
Chem. Eng. Res. Des.
,
66
(
1
), pp.
107
112
.
152.
Field
,
S. B.
,
Klaus
,
M.
,
Moore
,
M. G.
, and
Nori
,
F.
,
1997
, “
Chaotic Dynamics of Falling Disks
,”
Nature
,
388
(
6639
), pp.
252
254
.10.1038/40817
153.
Aref
,
H.
, and
Jones
,
S. W.
,
1993
, “
Chaotic Motion of a Solid Through Ideal Fluid
,”
Phys. Fluids A
,
5
(
12
), pp.
3026
3028
.10.1063/1.858712
154.
Tanabe
,
Y.
, and
Kaneko
,
K.
,
1994
, “
Behaviour of a Falling Paper
,”
Phys. Rev. Lett.
,
73
,
10
, pp.
1372
1375
.10.1103/PhysRevLett.73.1372
155.
Tanabe
,
Y.
, and
Kaneko
,
K.
,
1995
, “
Tanabe and Kaneko Reply
,”
Phys. Rev. Lett.
,
75
(
7
), p.
1421
.10.1103/PhysRevLett.75.1421
156.
Yow
,
H. N.
,
Pitt
,
M. J.
, and
Salman
,
A. D.
,
2005
, “
Drag Correlations for Particles of Regular Shape
,”
Adv. Powder Technol.
,
16
(
4
), pp.
363
372
.10.1163/1568552054194221
157.
Loth
,
E.
,
2008
, “
Drag of Non-Spherical Solid Particles of Regular and Irregular Shape
,”
Powder Technol.
,
182
(
3
), pp.
342
353
.10.1016/j.powtec.2007.06.001
158.
Song
,
X.
,
Xu
,
Z.
,
Li
,
G.
,
Pang
,
Z.
, and
Zhu
,
Z.
,
2017
, “
A New Model for Predicting Drag Coefficient and Settling Velocity of Spherical and Non-Spherical Particle in Newtonian Fluid
,”
Powder Technol.
,
321
, pp.
242
250
.10.1016/j.powtec.2017.08.017
159.
Chen
,
Y.
,
Third
,
J. R.
, and
Müller
,
C. R.
,
2015
, “
A Drag Force Correlation for Approximately Cubic Particles Constructed From Identical Spheres
,”
Chem. Eng. Sci.
,
123
, pp.
146
154
.10.1016/j.ces.2014.10.002
160.
Wadell
,
H.
,
1932
, “
Volume, Sphericity and Roundness of Rock Particles
,”
J. Geol.
,
40
(
5
), pp.
443
451
.10.1086/623964
161.
Wadell
,
H.
,
1934
, “
The Coefficient of Resistance as a Function of Reynolds Number for Solids of Various Shapes
,”
J. Franklin Inst.
,
217
(
4
), pp.
459
490
.10.1016/S0016-0032(34)90508-1
162.
Turton
,
R.
, and
Levenspiel
,
O.
,
1986
, “
A Short Note on the Drag Correlation for Spheres
,”
Powder Technol.
,
47
(
1
), pp.
83
86
.10.1016/0032-5910(86)80012-2
163.
Swamee
,
P. K.
, and
Ojha
,
C. S. P.
,
1991
, “
Drag Coefficient and Fall Velocity of Non-Spherical Particles
,”
J. Hydraul. Eng.
,
117
(
5
), pp.
660
667
.10.1061/(ASCE)0733-9429(1991)117:5(660)
164.
Schulz
,
E. F.
,
Wilde
,
R. H.
, and
Albertson
,
M. L.
,
1954
, “
Influence of Shape on the Fall Velocity of Sedimentary Particles
,” Missouri River Division, Corps of Engineers,
U. S. Army, through the Colorado A and M Research Foundation, Fort Collins, CO
, Report No. CER56EFS6.
165.
Chhabra
,
R. P.
,
Agarwal
,
L.
, and
Sinha
,
N. K.
,
1999
, “
Drag on Non-Spherical Particles: An Evaluation of Available Methods
,”
Powder Technol.
,
101
(
3
), pp.
288
295
.10.1016/S0032-5910(98)00178-8
166.
Chien
,
S. F.
,
1994
, “
Settling Velocity of Irregularly Shaped Particles
,”
SPE Drill. Completion
,
9
(
04
), pp.
281
289
.10.2118/26121-PA
167.
Hartman
,
M.
,
Trnka
,
O.
, and
Svoboda
,
K.
,
1994
, “
Free Settling of Non-Spherical Particles
,”
Ind. Eng. Chem. Res.
,
33
(
8
), pp.
1979
1983
.10.1021/ie00032a012
168.
Hölzer
,
A.
, and
Sommerfeld
,
M.
,
2008
, “
New Simple Correlation Formula for the Drag Coefficient of Non-Spherical Particles
,”
Powder Technol.
,
184
(
3
), pp.
361
365
.10.1016/j.powtec.2007.08.021
169.
Bagheri
,
G.
, and
Bonadonna
,
C.
,
2016
, “
On the Drag of Freely Falling Non-Spherical Particles
,”
Powder Technol.
,
301
, pp.
526
544
.10.1016/j.powtec.2016.06.015
170.
Wu
,
W.
, and
Wang
,
S. S.
,
2006
, “
Formulas for Sediment Porosity and Settling Velocity
,”
J. Hydraul. Eng.
,
132
(
8
), pp.
858
862
.10.1061/(ASCE)0733-9429(2006)132:8(858)
171.
Roostaee
,
A.
, and
Vaezi
,
M.
,
2022
, “
Developing a Standard Platform to Predict the Drag Coefficient of Irregular Shape Particles
,”
Powder Technol.
,
395
, pp.
314
337
.10.1016/j.powtec.2021.09.037
172.
Wilson
,
L.
, and
Huang
,
T.
,
1979
, “
The Influence of Shape on the Atmospheric Settling Velocity of Volcanic Ash Particles
,”
Earth Planet. Sci. Lett.
,
44
(
2
), pp.
311
324
.10.1016/0012-821X(79)90179-1
173.
Connolly
,
B. J.
,
Loth
,
E.
, and
Smith
,
C. F.
,
2020
, “
Shape and Drag of Irregular Angular Particles and Test Dust
,”
Powder Technol.
,
363
, pp.
275
285
.10.1016/j.powtec.2019.12.045
174.
Sommerfeld
,
M.
, and
Qadir
,
Z.
,
2018
, “
Fluid Dynamic Forces Acting on Irregular Shaped Particles: Simulations by the Lattice-Boltzmann Method
,”
Int. J. Multiphase Flow
,
101
, pp.
212
222
.10.1016/j.ijmultiphaseflow.2018.01.016
175.
Sun
,
Q.
,
Zhao
,
G.
,
Peng
,
W.
,
Wang
,
J.
,
Jiang
,
Y.
, and
Yu
,
S.
,
2018
, “
Numerical Predictions of the Drag Coefficients of Irregular Particles in an HTGR
,”
Ann. Nucl. Energy
,
115
, pp.
195
208
.10.1016/j.anucene.2018.01.040
176.
Knoll
,
M.
,
Gerhardter
,
H.
,
Prieler
,
R.
,
Mühlböck
,
M.
,
Tomazic
,
P.
, and
Hochenauer
,
C.
,
2019
, “
Particle Classification and Drag Coefficients of Irregularly-Shaped Combustion Residues With Various Size and Shape
,”
Powder Technol.
,
345
, pp.
405
414
.10.1016/j.powtec.2019.01.003
177.
Chadil
,
M. A.
,
Vincent
,
S.
, and
Estivalèzes
,
J. L.
,
2019
, “
Accurate Estimate of Drag Forces Using Particle-Resolved Direct Numerical Simulations
,”
Acta Mech.
,
230
(
2
), pp.
569
595
.10.1007/s00707-018-2305-1
178.
Khan
,
M. H.
,
Sooraj
,
P.
,
Sharma
,
A.
, and
Agrawal
,
A.
,
2018
, “
Flow Around a Cube for Reynolds Numbers Between 500 and 55,000
,”
Exp. Therm. Fluid Sci.
,
93
, pp.
257
271
.10.1016/j.expthermflusci.2017.12.013
179.
Saha
,
A. K.
,
2004
, “
Three-Dimensional Numerical Simulations of the Transition of Flow Past a Cube
,”
Phys. Fluids
,
16
(
5
), pp.
1630
1646
.10.1063/1.1688324
180.
El-Bakry
,
M. Y.
,
Habash
,
D. M.
, and
El-Bakry
,
M. Y.
,
2014
, “
Neural Network Model for Drag Coefficient and Nusselt Number of Square Prism Placed Inside a Wind Tunnel
,”
Int. J. Sci. Eng. Res.
,
5
(
6
), pp.
1411
1417
.
181.
Chakrabarty
,
D.
, and
Brahma
,
R.
,
2007
, “
Fluid Flow and Heat Transfer Characteristics for a Square Prism (Blockage Ratio = 0.1) Placed Inside a Wind Tunnel
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
44
(
3
), pp.
325
330
.10.1007/s00231-006-0217-4
182.
Ma
,
M.
,
Lu
,
J.
, and
Tryggvason
,
G.
,
2015
, “
Using Statistical Learning to Close Two-Fluid Multiphase Flow Equations for Simple Bubbly Systems
,”
Phys. Fluids
,
27
(
9
), p.
092101
.10.1063/1.4930004
183.
Yan
,
S.
,
He
,
Y.
,
Tang
,
T.
, and
Wang
,
T.
,
2019
, “
Drag Coefficient Prediction for Non-Spherical Particles in Dense Gas–Solid Two-Phase Flow Using Artificial Neural Network
,”
Powder Technol.
,
354
, pp.
115
124
.10.1016/j.powtec.2019.05.049
184.
Yan
,
S.
,
Wang
,
T.
,
Tang
,
T.
,
Ren
,
A.
, and
He
,
Y.
,
2020
, “
Simulation on Hydrodynamics of Non-Spherical Particulate System Using a Drag Coefficient Correlation Based on Artificial Neural Network
,”
Pet. Sci.
,
17
(
2
), pp.
537
555
.10.1007/s12182-019-00411-2
185.
Conner
,
J.
,
2022
, “
Prediction of Wall Effects on the Flow Dynamics of a Sphere at Low Reynolds Numbers Using a Multi-Output Back-Propagation Neural Network Model
,” Master thesis,
University of Texas at San Antonio, San Antonio, TX
.
186.
DOE (Department of Energy)
2022
, “National Energy Technology Laboratory,” accessed June 2, https://netl.doe.gov/node/9391
187.
Syamlal
,
M.
,
Musser
,
J.
, and
Dietiker
,
J.-F.
,
2017
, “
The Two-Fluid Model in the Open-Source Code MFIX
,”
Multiphase Flow Handbook
, 2nd ed.,
E. E.
Michaelides
,
C. T.
Crowe
, and
J. D.
Schwarzkopf
, eds.,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.