Abstract

Cavitating flows around a rotating circular cylinder at the low Reynolds number flow (Re ≤ 400) are numerically investigated. The computation is performed by incorporating a compressible homogeneous liquid–vapor two-phase flow and a homogeneous equilibrium mass transfer model. The simulation is well-validated for the cavitating and noncavitating flows over various objects in literature. The computation is then carried out for the rotating cylinder to analyze the combined effects of cavitation and self-rotation on the resultant load. The results state a high influence of the rotation speed ratio γ (a ratio of the cylinder's rotation velocity to the flow velocity) on the flow regime. For noncavitation, the Karman vortex street is observed for γ < 2.0 while a nearly steady-state results in a higher value. Under the Magnus effect, a larger lift is produced but also obviously increases the friction drag on the cylinder. Regarding the cavitation condition, the computation demonstrates an obvious reduction in the friction drag, leading to a decrease of the total drag of a rotating cylinder by about 52% compared to that without cavitation, while retaining reasonable lift. Almost constant load on the cylinder is found at low γ > 1.5 and cavitation number σ = p0pv12ρU02≤ 1.0, which is significant for designing and extending the working durability of an underwater moving object.

References

1.
Huang
,
Z.
,
Ong
,
M. C.
, and
Larsen
,
C. M.
,
2019
, “
Wake Structures and Vortex-Induced Forces of a Controlled In-Line Vibrating Circular Cylinder
,”
Ocean Eng.
,
189
, p.
106319
.10.1016/j.oceaneng.2019.106319
2.
Taheri
,
E.
,
Zhao
,
M.
,
Wu
,
H.
, and
Tong
,
F.
,
2020
, “
Numerical Investigation of Streamwise Vibration of an Elastically Mounted Circular Cylinder in Oscillatory Flow
,”
Ocean Eng.
,
209
, p.
107300
.10.1016/j.oceaneng.2020.107300
3.
Hong
,
S.
, and
Son
,
G.
,
2021
, “
Numerical Simulation of Cavitating Flows Around an Oscillating Circular Cylinder
,”
Ocean Eng.
,
226
, p.
108739
.10.1016/j.oceaneng.2021.108739
4.
Prandtl
,
L.
,
1925
, “
The Magnus Effect and Wind Powered Ships
,”
Naturwissenschaften
,
13
(
6
), pp.
93
108
.10.1007/BF01585456
5.
Tokumaru
,
P. T.
, and
Dimotakis
,
P. E.
,
1993
, “
The Lift of a Cylinder Executing Rotary Motions in a Uniform Flow
,”
J. Fluid Mech.
,
255
(
-1
), pp.
1
10
.10.1017/S0022112093002368
6.
Chew
,
Y. T.
,
Cheng
,
M.
, and
Luo
,
S. C.
,
1995
, “
A Numerical Study of Flow Past a Rotating Circular Cylinder Using a Hybrid Vortex Scheme
,”
J. Fluid Mech.
,
299
, pp.
35
71
.10.1017/S0022112095003417
7.
Coutanceau
,
M.
, and
Menard
,
C.
,
1985
, “
Influence of Rotation on the Near-Wake Development Behind an Impulsively Started Circular Cylinder
,”
J. Fluid Mech.
,
158
, pp.
399
446
.10.1017/S0022112085002713
8.
Badr
,
H. M.
, and
Dennis
,
S. C. R.
,
1985
, “
Time-Dependent Viscous Flow Past an Impulsively Started Rotating and Translating Circular Cylinder
,”
J. Fluid Mech.
,
158
, pp.
447
488
.10.1017/S0022112085002725
9.
Modi
,
V. J.
,
1997
, “
Moving Surface Boundary-Layer Control: A Review
,”
J. Fluids Struct.
,
11
(
6
), pp.
627
663
.10.1006/jfls.1997.0098
10.
Kang
,
S.
,
Choi
,
H.
, and
Lee
,
S.
,
1999
, “
Laminar Flow Past a Rotating Cylinder
,”
Phys. Fluids
,
11
(
11
), pp.
3312
3321
.10.1063/1.870190
11.
Mittal
,
S.
, and
Kumar
,
B.
,
2003
, “
Flow Past a Rotating Cylinder
,”
J. Fluid Mech.
,
476
, pp.
303
334
.10.1017/S0022112002002938
12.
Kimura
,
T.
,
Tsutahara
,
M.
, and
Wang
,
Z-y.
,
1992
, “
Wake of a Rotating Circular Cylinder
,”
AIAA J.
,
30
(
2
), pp.
555
556
.10.2514/3.10953
13.
Huang
,
X.
,
Cheng
,
C.
, and
Zhang
,
X.
,
2022
, “
Machine Learning and Numerical Investigation on Drag Reduction of Underwater Serial Multi-Projectiles
,”
Defence Technol.
,
18
(
2
), pp.
229
237
.10.1016/j.dt.2020.12.002
14.
Brennen
,
C. E.
,
1974
,
Hydrodynamics of Pump
,
Concepts ETI and Oxford Science Publications
, Cambridge University Press, New York.
15.
Franc
,
J.-P.
,
2006
, “
Physics and Control of Cavitation
,” Design and Analysis of High-Speed Pump, Education Notes, Neuilly-sur-Seine, France, RTO,
Report No. RTO-EN-AVT-143.
16.
Gugulothu
,
S. K.
,
2020
, “
Computational Modeling on Supercavitating Flow Over Axisymmetric Cavitators
,”
Ocean Eng.
,
210
, p.
107515
.10.1016/j.oceaneng.2020.107515
17.
Chen
,
Y.
,
Gong
,
Z.
,
Jie
,
L.
,
Chen
,
X.
, and
Lu
,
C.
,
2020
, “
Numerical Investigation on the Regime of Cavitation Shedding and Collapse During the Water-Exit of Submerged Projectile
,”
ASME J. Fluids Eng.
,
142
(
1
), p.
011403
.10.1115/1.4044831
18.
Li
,
Q.
, and
Lu
,
L.
,
2020
, “
Numerical Investigations of Cavitation Nose Structure of a High-Speed Projectile Impact on Water-Entry Characteristics
,”
J. Mar. Sci. Eng.
,
8
(
4
), p.
265
.10.3390/jmse8040265
19.
Fan
,
C.
,
Li
,
Z.
,
Du
,
M.
, and
Yu
,
R.
,
2021
, “
Numerical Study on the Influence of Vehicle Diameter Reduction and Diameter Expansion on Supercavitation
,”
Appl. Ocean Res.
,
116
, p.
102870
.10.1016/j.apor.2021.102870
20.
Nguyen
,
V.-T.
,
Phan
,
T.-H.
,
Duy
,
T.-N.
, and
Park
,
W.-G.
,
2022
, “
Unsteady Cavitation Around Submerged and Water-Exit Projectiles Under the Effect of the Free Surface: A Numerical Study
,”
Ocean Eng.
,
263
, p.
112368
.10.1016/j.oceaneng.2022.112368
21.
Salari
,
M.
,
Javadpour
,
S. M.
, and
Farahat
,
S.
,
2017
, “
Experimental Study of Fluid Flow Characteristics Around Conical Cavitators With Natural and Ventilated Cavitations
,”
J. Mar. Sci. Technol.
,
25
(
5
), pp.
489
498
.10.6119/JMST-017-0222-1
22.
Sun
,
T.
,
Ding
,
Y.
,
Huang
,
H.
,
Xie
,
B.
, and
Zhang
,
G.
,
2021
, “
Numerical Study on the Effects of Modulated Ventilation on Unsteady Cavity Dynamics and Noise Patterns
,”
Phys. Fluids
,
33
(
12
), p.
123307
.10.1063/5.0067559
23.
Xu
,
C.
,
Zhao
,
X.
, and
Khoo
,
B. C.
,
2022
, “
Numerical Investigation of Ventilated Cavitating Flow From High to Low Cavitation Numbers
,”
Ocean Eng.
,
266
(
Part 2
), p.
112782
.10.1016/j.oceaneng.2022.112782
24.
Schmidt
,
D. P.
,
Rutland
,
C. J.
, and
Corradini
,
M. L.
,
1999
, “
A Fully Compressible, Two-Dimensional Model of Small, High-Speed, Cavitating Nozzles
,”
Atom. Sprays
,
9
(
3
), pp.
255
276
.10.1615/AtomizSpr.v9.i3.20
25.
Decaix
,
J.
, and
Goncalves
,
E.
,
2013
, “
Investigation of Three-Dimensional Effects on a Cavitating Venturi Flow
,”
Int. J. Heat Fluid Flow
,
44
, pp.
576
595
.10.1016/j.ijheatfluidflow.2013.08.013
26.
Koukouvinis
,
P.
,
Naseri
,
H.
, and
Gavaises
,
M.
,
2017
, “
Performance of Turbulence and Cavitation Models in Prediction of Incipient and Developed Cavitation
,”
Int. J. Eng. Res.
,
18
(
4
), pp.
333
350
.10.1177/1468087416658604
27.
Iga
,
Y.
,
Nohmi
,
M.
,
Goto
,
A.
,
Shin
,
B. R.
, and
Ikohagi
,
T.
,
2003
, “
Numerical Study of Sheet Cavitation Breakoff Phenomenon on a Cascade Hydrofoil
,”
ASME J. Fluids Eng.
,
125
(
4
), pp.
643
651
.10.1115/1.1596239
28.
Ahn
,
S. H.
,
Xiao
,
Y.
,
Wang
,
Z.
,
Luo
,
Y.
, and
Fan
,
H.
,
2018
, “
Unsteady Prediction of Cavitating Flow Around a Three Dimensional Hydrofoil by Using a Modified RNG k-ε Model
,”
Ocean Eng.
,
158
, pp.
275
285
.10.1016/j.oceaneng.2018.04.005
29.
Anh
,
D. L.
,
Okajima
,
J.
, and
Iga
,
Y.
,
2019
, “
Modification of Energy Equation for Homogeneous Cavitation Simulation With Thermodynamic Effect
,”
ASME J. Fluids Eng.
,
141
(
8
), p.
081102
.10.1115/1.4042257
30.
Anh
,
D. L.
,
Hoang
,
P. T.
, and
Hung
,
T. T.
,
2021
, “
Assessment of a Homogeneous Model for Simulating a Cavitating Flow in Water Under a Wide Range of Temperatures
,”
ASME J. Fluids Eng.
,
143
(
10
), p.
101204
.10.1115/1.4051078
31.
Anh
,
D. L.
,
2022
, “
Study of Thermodynamic Effect on the Mechanism of Flashing Flow Under Pressurized Hot Water by a Homogeneous Model
,”
ASME J. Fluids Eng.
,
144
(
1
), p.
011206
.10.1115/1.4051972
32.
Anh
,
D. L.
,
Anh
,
T. V.
, and
Iga
,
Y.
,
2023
, “
Thermodynamic Cavitation Suppression on the Laminar Vortex Flow Over a Circular Cylinder in Water
,”
Int. J. Heat Mass Transfer
,
211
, p.
124210
.10.1016/j.ijheatmasstransfer.2023.124210
33.
Kolahan
,
A.
,
Roohi
,
E.
, and
Pendar
,
M. R.
,
2019
, “
Wavelet Analysis and Frequency Spectrum of Cloud Cavitation Around a Sphere
,”
Ocean Eng.
,
182
, pp.
235
247
.10.1016/j.oceaneng.2019.04.070
34.
Koukouvinis
,
P.
,
Bruecker
,
C.
, and
Gavaises
,
M.
,
2017
, “
Unveiling the Physical Mechanism Behind Pistol Shrimp Cavitation
,”
Sci. Rep.
,
7
(
1
), pp.
1
12
.10.1038/s41598-017-14312-0
35.
Giannadakis
,
E.
,
Gavaises
,
M.
, and
Arcoumanis
,
C.
,
2008
, “
Modelling of Cavitation in Diesel Injector Nozzles
,”
J. Fluid Mech.
,
616
, pp.
153
193
.10.1017/S0022112008003777
36.
Orley
,
F.
,
Pasquariello
,
V.
,
Hickel
,
S.
, and
Adams
,
N. A.
,
2015
, “
Cut-Element Based Immersed Boundary Method for Moving Geometries in Compressible Liquid Flows With Cavitation
,”
J. Comput. Phys.
,
283
, pp.
1
22
.10.1016/j.jcp.2014.11.028
37.
Utturkar
,
Y.
,
Wu
,
J.
,
Wang
,
G.
, and
Shyy
,
W.
,
2005
, “
Recent Progress in Modeling of Cryogenic Cavitation for Liquid Rocket Propulsion
,”
Prog. Aerosp. Sci.
,
41
(
7
), pp.
558
608
.10.1016/j.paerosci.2005.10.002
38.
Karathanassis
,
I. K.
,
Koukouvinis
,
P.
, and
Gavaises
,
M.
,
2017
, “
Comparative Evaluation of Phase-Change Mechanisms for the Prediction of Flashing Flows
,”
Int. J. Multiphase Flow
,
95
, pp.
257
270
.10.1016/j.ijmultiphaseflow.2017.06.006
39.
Chen
,
T.
,
Huang
,
B.
,
Wang
,
G.
, and
Zhao
,
X.
,
2016
, “
Numerical Study of Cavitating Flows in a Wide Range of Water Temperature With Special Emphasis on Two Typical Cavitation Dynamics
,”
Int. J. Heat Mass Transfer
,
101
, pp.
886
900
.10.1016/j.ijheatmasstransfer.2016.05.107
40.
Chebli
,
R.
,
Audebert
,
B.
,
Zhang
,
G.
, and
Coutier-Delgosha
,
O.
,
2021
, “
Influence of the Turbulence Modeling on the Simulation of Unsteady Cavitating Flows
,”
Comput. Fluids
,
221
, p.
104898
.10.1016/j.compfluid.2021.104898
41.
Thom
,
A.
,
1933
, “
The Flow Past Circular Cylinder at Low Speeds
,”
Proc. R. Soc. A
,
141
, pp.
651
669
.10.1098/rspa.1933.0146
42.
Gnanaskandan
,
A.
, and
Mahesh
,
K.
,
2016
, “
Numerical Investigation of Near-Wake Characteristics of Cavitating Flow Over a Circular Cylinder
,”
J. Fluid Mech.
,
79
, pp.
453
491
.10.1017/jfm.2016.19
43.
Kim
,
K. H.
, and
Choi
,
J. I.
,
2019
, “
Lock-in Regions of Laminar Flows Over a Streamwise Oscillating Circular Cylinder
,”
J. Fluid Mech.
,
858
, pp.
315
351
.10.1017/jfm.2018.787
44.
Yee
,
H. C.
,
Sandham
,
N. D.
, and
Djomehri
,
M. J.
,
1999
, “
Low-Dissipative High-Order Shock-Capturing Methods Using Characteristic-Based Filters
,”
J. Comput. Phys.
,
150
(
1
), pp.
199
238
.10.1006/jcph.1998.6177
45.
Hoffmann
,
A. K.
, and
Chiang
,
S. T.
,
2000
,
Computational Fluid Dynamics
, Vol.
II
, 4th ed.,
A Publication of Engineering Education System
,
Wichita, KS
.
46.
Rouse
,
H.
, and
McNown
,
J. S.
,
1948
,
Cavitation and Pressure Distribution Head Forms at Zero Angle of Yaw
,
The State University of Iowa
, Ames, IA.
47.
Zdravkovich
,
M.
,
1997
,
Flow Around Circular Cylinders
, Vol.
1
,
Oxford Science Publication
.
You do not currently have access to this content.