Abstract

A three-dimensional computational model is presented in this paper that illustrates the detailed electrical characteristics, and the current–voltage (i–v) relationship throughout the preheating process of premixed methane-oxygen oxyfuel cutting flame subject to electric bias voltages. As such, the equations describing combustion, electrochemical transport for charged species, and potential are solved through a commercially available finite volume computational fluid dynamics (CFD) code. The reactions of the methane-oxygen (CH4–O2) flame were combined with a reduced mechanism, and additional ionization reactions that generate three chemi-ions, H3O+, HCO+, and e, to describe the chemistry of ions in flames. The electrical characteristics such as ion migrations and ion distributions are investigated for a range of electric potential, V ∈ [−5 V, +5 V]. Since the physical flame is comprised of twelve Bunsen-like conical flames, inclusion of the third dimension imparts the resolution of fluid mechanics and the interaction among the individual cones. It was concluded that charged “sheaths” are formed at both torch and workpiece surfaces, subsequently forming three distinct regimes in the i–v relationship. The i–v characteristics obtained from this study have been compared to the previous experimental and two-dimensional computational model for premixed flame. In this way, the overall model generates a better understanding of the physical behavior of the oxyfuel-cutting flames, along with more validated i–v characteristics. Such understanding might provide critical information toward achieving an autonomous oxyfuel-cutting process.

References

1.
Martin
,
C. R.
,
2017
, “
Mechanized Oxyfuel Control With Ion Current Sensing
,”
Weld. J.
,
96
(
5
), pp.
154
162
.https://bpb-use1.wpmucdn.com/sites.psu.edu/dist/9/69430/files/2019/08/weldj_2017.pdf
2.
Martin
,
C. R.
,
2017
, “
Replacing Mechanized Oxyfuel Cutting Sensors With Ion Current Sensing
,”
ASME
Paper No. MSEC2017-2789. 10.1115/MSEC2017-2789
3.
Martin
,
C. R.
,
2018
, “
Work Piece Condition Detection Using Flame Electrical Characteristics in Oxy-Fuel Thermal Processing Equipment
,” U.S. Patent No. 10067496.
4.
Xu
,
K.
,
Untaroiu
,
A.
, and
Martin
,
C. R.
,
2020
, “
Simulation of Ion Current in Oxyfuel Flame Subject to an Electric Field
,”
ASME
Paper No. IMECE2020-24601. 10.1115/IMECE2020-24601
5.
Martin
,
C. R.
,
Untaroiu
,
A.
, and
Xu
,
K.
,
2021
, “
A One Dimensional Model for Ion Transport in a Flame With Two Absorbing Surfaces
,”
Combust. Theory Modell.
,
25
(
1
), pp.
22
43
.10.1080/13647830.2020.1826581
6.
Martin
,
C. R.
,
Untaroiu
,
A.
, and
Xu
,
K.
,
2022
, “
Spatially Resolved Ion Density Measurements in an Oxyfuel Cutting Flame
,”
Combust. Sci. Technol.
,
194
(
5
), pp.
930
945
.10.1080/00102202.2020.1792458
7.
Wilson
,
H.
,
1916
, “
The Electrical Conductivity and Luminosity of Flames Containing Salt Vapours
,”
Philos. Trans. R. Soc. Lond.
,
216
, pp.
63
90
.
8.
Calcote
,
H. F.
,
1961
, “
Ion Production and Recombination in Flames
,”
Symp. (Int.) Combust.
,
8
(
1
), pp.
184
199
.10.1016/S0082-0784(06)80502-3
9.
Lawton
,
J.
, and
Weinberg
,
F. J.
,
1969
,
Electrical Aspects of Combustion
,
Clarendon Press
,
Oxford
.
10.
Fialkov
,
A. B.
,
1997
, “
Investigations on Ions in Flames
,”
Prog. Energy Combust. Sci.
,
23
(
5–6
), pp.
399
528
.10.1016/S0360-1285(97)00016-6
11.
Han
,
J.
,
Belhi
,
M.
,
Casey
,
T. A.
,
Bisetti
,
F.
,
Im
,
H. G.
, and
Chen
,
J.-Y.
,
2017
, “
The i–v Curve Characteristics of Burnerstabilized Premixed Flames: Detailed and Reduced Models
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1241
1250
.10.1016/j.proci.2016.05.056
12.
Pond
,
T. L.
, and
Martin
,
C. R.
,
2020
, “
Electrical Characteristics of the Oxyfuel Flame While Cutting Steel
,”
Exp. Therm. Fluid Sci.
,
112
, p.
109985
.10.1016/j.expthermflusci.2019.109985
13.
Martin
,
C. R.
,
Untaroiu
,
A.
,
Xu
,
K.
, and
Rahman
,
S. M.
M.,
2022
, “
A Study of the Efficacy of Flame Electrical Resistance for Standoff Measurements During the Oxyfuel Cutting Process
,”
ASME J. Manuf. Sci. Eng.
,
144
(
7
), p.
071010
.10.1115/1.4053216
14.
Belhi
,
M.
,
Domingo
,
P.
, and
Vervisch
,
P.
,
2010
, “
Direct Numerical Simulation of the Effect of an Electric Field on Flame Stability
,”
Combust. Flame
,
157
(
12
), pp.
2286
2297
.10.1016/j.combustflame.2010.07.007
15.
Martin
,
C. R.
,
2018
, “
A Study of Ion Currents in an Oxyfuel Flame Due to Work Surface Chemical Action
,”
Exp. Therm. Fluid Sci.
,
98
, pp.
239
250
.10.1016/j.expthermflusci.2018.06.003
16.
Goodings
,
J. M.
,
Guo
,
J.
,
Hayhurst
,
A. N.
, and
Taylor
,
S. G.
,
2001
, “
Current–Voltage Characteristics in a Flame Plasma: Analysis for Positive and Negative Ions, With Applications
,”
Int. J. Mass Spectrom.
,
206
(
1–2
), pp.
137
151
.10.1016/S1387-3806(00)00398-5
17.
Karnani
,
S.
, and
Dunn-Rankin
,
D.
,
2015
, “
Detailed Characterization of DC Electric Field Effects on Small Non-Premixed Flames
,”
Combust. Flame
,
162
(
7
), pp.
2865
2872
.10.1016/j.combustflame.2015.03.019
18.
Imamura
,
O.
,
Chen
,
B.
,
Nishida
,
S.
,
Yamashita
,
K.
,
Tsue
,
M.
, and
Kono
,
M.
,
2011
, “
Combustion of Ethanol Fuel Droplet in Vertical Direct Current Electric Field
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2005
2011
.10.1016/j.proci.2010.07.004
19.
Speelman
,
N.
,
de Goey
,
L. P. H.
, and
van Oijen
,
J. A.
,
2015
, “
Development of a Numerical Model for the Electric Current in Burner-Stabilised Methane–Air Flames
,”
Combust. Theory Modell.
,
19
(
2
), pp.
159
187
.10.1080/13647830.2014.998712
20.
Luo
,
Y.
,
Gan
,
Y.
, and
Jiang
,
Z.
,
2020
, “
Study on the Electrical Response of Small Ethanol-Air Diffusion Flame Under the Uniform Electric Field
,”
Int. J. Energy Res.
,
44
(
14
), pp.
11872
11882
.10.1002/er.5828
21.
Martin
,
C. R.
,
Pond
,
T.
,
Tomas
,
J.
,
Schmit
,
J.
,
Miguel
,
E.
,
Untaroiu
,
A.
, and
Xu
,
K.
,
2020
, “
Semiconductor Aspects of the Oxyfuel Cutting Torch Preheat Flame: Part II—The Flame's Internal Electrical Structure
,”
ASME
Paper No. MSEC2020-8259. 10.1115/MSEC2020-8259
22.
Xu
,
K.
,
2021
, “
Simulation of Electrical Characteristics in Oxyfuel Flame Subject to an Electric Field
,” M.S. thesis,
Virginia Tech
,
Blacksburg, VA
.
23.
Law
,
C. K.
,
2006
,
Combustion Theory
, 2nd ed.,
CRC Press
, Boca Raton, FL.
24.
Untaroiu
,
A.
,
Rahman
,
S. M. M.
, and
Martin
,
C. R.
,
2023
, “
Role of Secondary Ions on the i–v Characteristics of Oxyfuel Flame Subject to an Electric Field
,”
ASME J. Fluids Eng.
,
145
(
7
), p.
071202
.10.1115/1.4056845
25.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k − ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
26.
ANSYS
, 2013, “ANSYS Fluent User's Guide,”ANSYS FLUENT 12.0 User’s Guide, accessed July 20, 2023, https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/main_pre.htm
27.
Farraj
,
A. R. D.
,
Al-Naeemy
,
A. M.
,
Al-Khateeb
,
A. N.
, and
Kyritsis
,
D. C.
,
2017
, “
Laminar Non-Premixed Counterflow Flames Manipulation Through the Application of External Direct Current Fields
,”
J. Energy Eng.
,
143
(
4
), p.
04017002
.10.1061/(ASCE)EY.1943-7897.0000425
28.
Belhi
,
M.
,
Han
,
J.
,
Casey
,
T. A.
,
Chen
,
J.-Y.
,
Im
,
H. G.
,
Sarathy
,
S. M.
, and
Bisetti
,
F.
,
2018
, “
Analysis of the Current–Voltage Curves and Saturation Currents in Burner Stabilised Premixed Flames With Detailed Ion Chemistry and Transport Models
,”
Combust. Theory Modell.
,
22
(
5
), pp.
939
972
.10.1080/13647830.2018.1468033
29.
Belhi
,
M.
,
Lee
,
B. J.
,
Cha
,
M. S.
, and
Im
,
H. G.
,
2019
, “
Three-Dimensional Simulation of Ionic Wind in a Laminar Premixed Bunsen Flame Subjected to a Transverse dc Electric Field
,”
Combust. Flame
,
202
, pp.
90
106
.10.1016/j.combustflame.2019.01.005
30.
Lu
,
T.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
.10.1016/j.proci.2004.08.145
31.
Desjardins
,
P. P.
, and
Pitsch
,
H.
,
2008
, “
An Efficient Errorpropagation- Based Reduction Method for Large Chemical Kinetic Mechanisms
,”
Combust. Flame
,
154
(
1–2
), pp.
67
81
.10.1016/j.combustflame.2007.10.020
32.
Niemeyer
,
K. E.
, and
Sung
,
C.-J.
,
2011
, “
On the Importance of Graph Search Algorithms for DRGEP-Based Mechanism Reduction Methods
,”
Combust. Flame
,
158
(
8
), pp.
1439
1443
.10.1016/j.combustflame.2010.12.010
33.
Mestas
, III
,
P. O.
,
Clayton
,
P.
, and
Niemeyer
,
K. E.
,
2019
, “
pyMARS: Automatically Reducing Chemical Kinetic Models in Python
,”
J. Open Source Software
,
4
(
41
), p.
1543
.10.21105/joss.01543
34.
Burcat
,
A.
,
2006
, “
Ideal Gas Thermodynamic Data in Polynomial Form for Combustion and Air Pollution Use
,” Budapest, Hungary, accessed Nov 11, 2022, http://garfield.chem.elte.hu/Burcat/burcat.html
35.
Chen
,
B.
,
Wang
,
H.
,
Wang
,
Z.
,
Han
,
J.
,
Alquaity
,
A. B. S.
,
Wang
,
H.
,
Hansen
,
N.
, and
Sarathy
,
S. M.
,
2019
, “
Ion Chemistry in Premixed Rich Methane Flames
,”
Combust. Flame
,
202
, pp.
208
218
.10.1016/j.combustflame.2019.01.009
36.
Goodings
,
J. M.
,
Bohme
,
D. K.
, and
Ng
,
C.-W.
,
1979
, “
Detailed Ion Chemistry in Methane-Oxygen Flames. I. Positive Ions
,”
Combust. Flame
,
36
, pp.
27
43
.10.1016/0010-2180(79)90044-0
37.
Fialkov
,
A. B.
,
Kalinich
,
K. Y.
, and
Fialkov
,
B. S.
,
1992
, “
Experimental Determination of Primary Ions in Flame
,”
Symp. (Int.) Combust.
,
24
(
1
), pp.
785
791
.10.1016/S0082-0784(06)80096-2
38.
Pedersen
,
T.
, and
Brown
,
R. C.
,
1993
, “
Simulation of Electric Field Effects in Premixed Methane Flames
,”
Combust. Flame
,
94
(
4
), pp.
433
448
.10.1016/0010-2180(93)90125-M
39.
Prager
,
J.
,
Riedel
,
U.
, and
Warnatz
,
J.
,
2007
, “
Modeling Ion Chemistry and Charged Species Diffusion in Lean Methane Oxygen Flames
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1129
1137
.10.1016/j.proci.2006.07.141
40.
Belhi
,
M.
,
Lee
,
B. J.
,
Bisetti
,
F.
, and
Im
,
H. G.
,
2017
, “
A Computational Study of the Effects of dc Electric Fields on Non-Premixed Counterflow Methane-Air Flames
,”
J. Phys. D Appl. Phys.
,
50
(
49
), p.
494005
.10.1088/1361-6463/aa94bb
41.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
42.
Alam
,
M. D.
, and
Soeimanikutanaei
,
S.
,
2021
, “
Effects of Geometrical Configuration on the Aerodynamic Performance of the Joined Wings
,”
ASME
Paper No. IMECE2021-72087. 10.1115/IMECE2021-72087
43.
Alam
,
M. D.
, and
Cao
,
Y.
,
2021
, “
Static and Modal Analysis of a Crankshaft Reciprocating Driver for Reciprocating-Airfoil (RA) Driven VTOL Aircraft
,”
Mech. Based Des. Struct. Mach.
,
51
(
9
), pp.
5072
5087
.10.1080/15397734.2021.1991807
44.
Fu
,
G.
, and
Untaroiu
,
A.
,
2021
, “
Investigation of Tire Rotating Modeling Techniques Using Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
143
(
11
), p.
111206
.10.1115/1.4051311
45.
Hayden
,
A.
, and
Untaroiu
,
A.
,
2022
, “
Strain Response and Aerodynamic Damping of a Swirl Distortion Generator Using Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
144
(
3
), p.
031204
.10.1115/1.4052139
46.
Clements
,
R. M.
, and
Smy
,
P. R.
,
1969
, “
Electrostatic-Probe Studies in a Flame Plasma
,”
J. Appl. Phys.
,
40
(
11
), pp.
4553
4558
.10.1063/1.1657231
47.
Clements
,
R. M.
, and
Smy
,
P. R.
,
1970
, “
Ion Current From a Collision-Dominated Flowing Plasma to a Cylindrical Electrode Surrounded by a Thin Sheath
,”
J. Appl. Phys.
,
41
(
9
), pp.
3745
3749
.10.1063/1.1659502
48.
Boucher
,
P. E.
,
1928
, “
The Drop of Potential at the Cathode in Flames
,”
Phys. Rev.
,
31
(
5
), pp.
833
850
.10.1103/PhysRev.31.833
49.
Martin
,
C. R.
,
Oswald
,
D.
,
Rahman
,
S. M. M.
, and
Untaroiu
,
A.
,
2023
, “
Ions in the Oxyfuel Cutting Flame Due to Workpiece Carbon
,”
Manuf. Lett.
,
36
, pp.
22
25
.10.1016/j.mfglet.2022.12.008
50.
Rahman
,
S. M. M.
,
Warrier
,
R.
,
Untaroiu
,
A.
, and
Martin
,
C. R.
,
2022
, “
Electrical Characteristics of the Oxyfuel Preheat Flame: 3D Computational Model Subject to Electric Bias Voltages
,”
ASME
Paper No. IMECE2022-95787. 10.1115/IMECE2022-95787
You do not currently have access to this content.