Abstract

In this study, boundary layer flows over a flat plate with a canopy of an array of rods are experimentally investigated with particle image velocimetry (PIV) measurements. The experiments were carried out in a liquid tunnel, where the refractive index of the transparent liquid is matched with that of transparent rods in the array. The statistics of the velocity data at multiple planes show the change of the flow patterns produced by the rod array. The pressure field was calculated from the velocity data through solving the pressure Poisson equation. The power spectral density of the pressure fluctuations, quantifying the sound pressure level, shows that the rod array causes the attenuation of the pressure fluctuations both below and above the rod array. The characteristic flow patterns altered by the rod array were examined by the dynamic mode decomposition. The uncertainty of the measurements was discussed.

References

1.
Morgan
,
H. G.
, and
Hardin
,
J. C.
,
1975
, “
Airframe Noise-the Next Aircraft Noise Barrier
,”
J. Aircr.
,
12
(
7
), pp.
622
624
.10.2514/3.59844
2.
Lilley
,
G.
,
1998
, “
A Study of the Silent Flight of the Owl
,”
AIAA
Paper No. 1998-2340.10.2514/6.1998-2340
3.
Graham
,
R. R.
,
1934
, “
The Silent Flight of Owls
,”
Aeronaut. J.
,
38
(
286
), pp.
837
843
.10.1017/S0368393100109915
4.
Hersh
,
A. S.
,
Soderman
,
P. T.
, and
Hayden
,
R. E.
,
1974
, “
Investigation of Acoustic Effects of Leading-Edge Serrations on Airfoils
,”
J. Aircr.
,
11
(
4
), pp.
197
202
.10.2514/3.59219
5.
Cao
,
H.
,
Zhang
,
M.
,
Zhang
,
Y.
, and
Zhou
,
T.
,
2021
, “
A General Model for Trailing Edge Serrations Simulation on Wind Turbine Airfoils
,”
Theory Appl. Mech. Lett.
,
11
(
4
), p.
100284
.10.1016/j.taml.2021.100284
6.
Jaron
,
R.
,
Moreau
,
A.
,
Guérin
,
S.
, and
Schnell
,
R.
,
2018
, “
Optimization of Trailing-Edge Serrations to Reduce Open-Rotor Tonal Interaction Noise
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021201
.10.1115/1.4037981
7.
Jaworski
,
J. W.
, and
Peake
,
N.
,
2013
, “
Aerodynamic Noise From a Poroelastic Edge With Implications for the Silent Flight of Owls
,”
J. Fluid Mech.
,
723
, pp.
456
479
.10.1017/jfm.2013.139
8.
Jaworski
,
J. W.
, and
Peake
,
N.
,
2013
, “
Parametric Guidance for Turbulent Noise Reduction From Poroelastic Trailing Edges and Owls
,”
AIAA
Paper No. 2013-2007.10.2514/6.2013-2007
9.
Clark
,
I. A.
,
Daly
,
C. A.
,
Devenport
,
W.
,
Alexander
,
W. N.
,
Peake
,
N.
,
Jaworski
,
J. W.
, and
Glegg
,
S.
,
2016
, “
Bio-Inspired Canopies for the Reduction of Roughness Noise
,”
J. Sound Vib.
,
385
, pp.
33
54
.10.1016/j.jsv.2016.08.027
10.
Gonzalez
,
A.
,
Glegg
,
S. A.
,
Hari
,
N.
, and
Devenport
,
W. J.
,
2019
, “
Fundamental Studies of the Mechanisms of Pressure Shielding
,”
AIAA
Paper No. 2019-2403.10.2514/6.2019-2403
11.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, New York.
12.
Fröhlich
,
J.
, and
von Terzi
,
D.
,
2008
, “
Hybrid LES/RANS Methods for the Simulation of Turbulent Flows
,”
Prog. Aerosp. Sci.
,
44
(
5
), pp.
349
377
.10.1016/j.paerosci.2008.05.001
13.
Bai
,
K.
, and
Katz
,
J.
,
2014
, “
On the Refractive Index of Sodium Iodide Solutions for Index Matching in PIV
,”
Exp. Fluids
,
55
(
4
), p.
1704
.10.1007/s00348-014-1704-x
14.
White
,
F. M.
,
2006
,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
15.
Schlichting
,
H.
, and
Gersten
,
K.
,
2017
,
Boundary-Layer Theory
,
Springer
, Heidelberg.
16.
Fellouah
,
H.
, and
Pollard
,
A.
,
2009
, “
The Velocity Spectra and Turbulence Length Scale Distributions in the Near to Intermediate Regions of a Round Free Turbulent Jet
,”
Phys. Fluids
,
21
(
11
), p.
115101
.10.1063/1.3258837
17.
Doron
,
P.
,
Bertuccioli
,
L.
,
Katz
,
J.
, and
Osborn
,
T. R.
,
2001
, “
Turbulence Characteristics and Dissipation Estimates in the Coastal Ocean Bottom Boundary Layer From PIV Data
,”
J. Phys. Oceanogr.
,
31
(
8
), pp.
2108
2134
.10.1175/1520-0485(2001)031<2108:TCADEI>2.0.CO;2
18.
Xu
,
D.
, and
Chen
,
J.
,
2013
, “
Accurate Estimate of Turbulent Dissipation Rate Using PIV Data
,”
Exp. Therm. Fluid Sci.
,
44
, pp.
662
672
.10.1016/j.expthermflusci.2012.09.006
19.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry: A Practical Guide
,
Springer
,
Berlin
.
20.
Zhang
,
Z.
,
Cui
,
G.
, and
Xu
,
C.
,
2002
, “
Modern Turbulence and New Challenges
,”
Acta Mech. Sin.
,
18
, pp.
309
327
.
21.
de Kat
,
R.
,
van Oudheusden
,
B. W.
, and
Scarano
,
F.
,
2008
, “
Instantaneous Planar Pressure Field Determination Around a Square-Section Cylinder Based on Time-Resolved stereo-PIV
,”
AIAA
Paper No. 2009-4043.10.2514/6.2009-4043
22.
van Oudheusden
,
B. W.
,
2013
, “
PIV-Based Pressure Measurement
,”
Meas. Sci. Technol.
,
24
(
3
), p.
032001
.10.1088/0957-0233/24/3/032001
23.
Kuperman
,
W. A.
, and
Roux
,
P.
,
2007
,
Underwater Acoustics, Springer Handbook of Acoustics
, Springer, New York, pp.
149
204
.
24.
Morilhat
,
S.
,
Chedevergne
,
F.
, and
Simon
,
F.
,
2019
, “
A Unified Methodology to Evaluate the Radiated Noise Due to Turbulent Boundary Layer Flows
,”
ASME J. Fluids Eng.
,
141
(
6
), p.
061201
.10.1115/1.4041611
25.
Gonzalez
,
A. J.
,
2019
, “
A Computational Analysis of Bio-Inspired Modified Boundary Layers for Acoustic Pressure Shielding in a Turbulent Wall Jet
,” Master's thesis,
Florida Atlantic University
, Boca Raton, FL.
26.
Lee
,
Y.-T.
,
Blake
,
W. K.
, and
Farabee
,
T. M.
,
2005
, “
Modeling of Wall Pressure Fluctuations Based on Time Mean Flow Field
,”
ASME J. Fluids Eng.
,
127
(
2
), pp.
233
240
.10.1115/1.1881698
27.
Remmler
,
S.
,
Christophe
,
J.
,
Anthoine
,
J.
, and
Moreau
,
S.
,
2010
, “
Computation of Wall Pressure Spectra From Steady Flow Data for Noise Prediction
,”
AIAA J.
,
48
(
9
), pp.
1997
2007
.10.2514/1.J050206
28.
Slama
,
M.
,
Leblond
,
C.
, and
Sagaut
,
P.
,
2018
, “
A Kriging-Based Elliptic Extended Anisotropic Model for the Turbulent Boundary Layer Wall Pressure Spectrum
,”
J. Fluid Mech.
,
840
, pp.
25
55
.10.1017/jfm.2017.810
29.
Gao
,
D.
,
Chang
,
X.
,
Chen
,
G.
, and
Chen
,
W.
,
2022
, “
Fluid Dynamics Behind a Circular Cylinder Embedded With an Active Flapping Jet Actuator
,”
ASME J. Fluids Eng.
,
144
(
2
), p.
021301
.10.1115/1.4051312
30.
Kutz
,
J. N.
,
Brunton
,
S. L.
,
Brunton
,
B. W.
, and
Proctor
,
J. L.
,
2016
,
Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
31.
Rising
,
C. J.
,
Reyes
,
J.
, and
Ahmed
,
K. A.
,
2022
, “
Characteristics of a Single Sensor Fiber-Coupled Three-Dimensional Particle Image Velocimetry for Reacting Flow-Fields
,”
ASME J. Fluids Eng.
,
144
(
1
), p.
011502
.10.1115/1.4051695
32.
Zhang
,
T.
,
Huang
,
G.
,
Yin
,
J.
,
Zhang
,
Z.
,
Wang
,
D.
,
Sun
,
Y.
, and
Liao
,
Y.
,
2022
, “
Investigation on Swirl Instability in a Vane-Type Separator With Tomographic Particle Image Velocimetry
,”
ASME J. Fluids Eng.
,
144
(
5
), p.
051402
.10.1115/1.4052547
33.
Wang
,
X.
,
Zhang
,
J.
,
Huang
,
Z.
,
Wang
,
L.
,
Li
,
W.
, and
Lan
,
G.
,
2023
, “
Large Eddy Simulation on the Cavitation Flow and Noise Characteristics of a NACA0009 Hydrofoil With Different Tip Clearance Sizes
,”
ASME J. Fluids Eng.
,
145
(
1
), p.
011204
.10.1115/1.4055542
34.
Papadopoulos
,
C. E.
, and
Yeung
,
H.
,
2001
, “
Uncertainty Estimation and Monte Carlo Simulation Method
,”
Flow Meas. Instrum.
,
12
(
4
), pp.
291
298
.10.1016/S0955-5986(01)00015-2
35.
ISO
,
2008
, “ISO/IEC Guide 98-3:2008 Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995),”
Standard, International Organization for Standardization
,
Geneva, Switzerland
.
36.
Wieneke
,
B.
,
2015
, “
PIV Uncertainty Quantification From Correlation Statistics
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074002
.10.1088/0957-0233/26/7/074002
You do not currently have access to this content.