Abstract

The influence of inducer rotation speed on the propagation characteristics of rotating cavitation and on the unsteady characteristics of cavitation in rotating cavitation and cavitation surge were examined using a three-bladed inducer, which is named THK inducer, to develop the rocket engine turbopump that can operate stably over a wide operating range. The novel point of the paper is focusing on the cavitation itself, which is the cause of cavitation instabilities. The paper conducted two types of experiments using an inducer and single hydrofoils, and the dimensional and nondimensional unsteady characteristic, which is the frequency of unsteady cavitation and the Strouhal number, were evaluated. Three types of rotating cavitation and cavitation surge were observed in the inducer. For a given cavitation number, the Strouhal number of rotating cavitation and the frequency of unsteady cavitation in cavitation surge are independent of the inducer rotation speed, respectively. The characteristic of rotating cavitation corresponds to that of cavitations arising in hydrofoils, but its characteristic of cavitation surge does not correspond. The dynamic characteristic of cavitation compliance in cavitation surge is similar to that of several rocket engine turbopumps. Therefore, it was proved that rotating cavitation is a cavity oscillation and cavitation surge is a system oscillation. Additionally, in a flow field with the same flow coefficient and different impeller rotation speed, the unsteady characteristics of cavitation instabilities are equal if the cavitation number is equal, which is named the “similarity law of cavitation number on cavitation instability.”

References

1.
Arndt
,
R. E. A.
,
Song
,
C. C. S.
,
Kjeldsen
,
M.
, and
Keller
,
A.
,
2000
, “
Instability of Partial Cavitation: A Numerical/Experimental Approach
,”
Proceedings of the Twenty-Third Symposium on Naval Hydrodynamics
, Val-de-Reuil, France, Sep. 17–22, pp.
599
615
.https://conservancy.umn.edu/handle/11299/49781
2.
Pendar
,
M. R.
, and
Roohi
,
E.
,
2018
, “
Cavitation Characteristics Around a Sphere: An LES Investigation
,”
Int. J. Multiphase Flow
,
98
, pp.
1
23
.10.1016/j.ijmultiphaseflow.2017.08.013
3.
Franc
,
J. P.
, and
Michel
,
J. M.
,
1985
, “
Attached Cavitation and the Boundary Layer: Experimental Investigation and Numerical Treatment
,”
J. Fluid Mech.
,
154
, pp.
63
90
.10.1017/S0022112085001422
4.
Kawanami
,
Y.
,
Kato
,
H.
,
Yamaguchi
,
H.
,
Tanimura
,
M.
, and
Tagaya
,
Y.
,
1997
, “
Mechanism and Control of Cloud Cavitation
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
788
794
. 99.10.1115/1.2819499
5.
Mousavi
,
S. M.
, and
Roohi
,
E.
,
2023
, “
On the Effects of Hybrid Surface Wettability on the Structure of Cavitating Flow Using Implicit Large Eddy Simulation
,”
J. Taiwan Inst. Chem. Eng.
, p.
104828
(in press).10.1016/j.jtice.2023.104828
6.
Kamijo
,
K.
,
Shimura
,
T.
, and
Watanabe
,
M.
,
1977
, “
An Experimental Investigation of Cavitating Inducer Instability
,” ASME Paper No. 77/WA-FE-14.10.1115/77/WA-FE-14
7.
Acosta
,
A. J.
,
1958
, “
An Experimental Study of Cavitating Inducers
,”
Proceedings of 2nd Symposium on Naval Hydrodynamics
, Washington, DC, Aug. 25–29, pp.
533
557
.
8.
Rubin
,
S.
,
1966
, “
Longitudinal Instability of Liquid Rockets Due to Propulsion Feedback (POGO)
,”
J. Spacecr. Rockets
,
3
(
8
), pp.
1188
1195
.10.2514/3.28626
9.
Rubin
,
S.
,
1970
, “
Prevention of Coupled Structure-Propulsion Instability (POGO)
,”
NASA
,
Washington, DC
, Report No. NASA-SP-8055.
10.
Young
,
W. E.
,
1972
, “
Study of Cavitating Inducer Instabilities
,”
NASA
,
Washington, DC
, Report No. NASA-CR-123939.
11.
Ryan
,
R.
,
Gross
,
L.
,
Mills
,
D.
, and
Mitchell
,
P.
,
1994
, “
The Space Shuttle Main Engine Liquid Oxygen Pump High-Synchronous Vibration Issue, the Problem, the Resolution Approach, the Solution
,” AIAA Paper No. 94-3153.10.2514/6.77/94-3153
12.
Goirand
,
B.
,
Mertiz
,
A.
,
Joussellin
,
F.
, and
Rebattet
,
C.
,
1992
, “
Experimental Investigation of Radial Loads Induced by Partial Cavitation With a Liquid Hydrogen Inducer
,”
Proceedings of the 3rd International Conference on Cavitation
, Cambridge, UK, Dec. 9–12, pp.
263
269
.
13.
Kamijo
,
K.
,
Yoshida
,
M.
, and
Tsujimoto
,
Y.
,
1993
, “
Hydraulic and Mechanical Performance of LE-7 LOX Pump Inducer
,”
J. Propul. Power
,
9
(
6
), pp.
819
826
.10.2514/3.23695
14.
Shimagaki
,
M.
,
Watanabe
,
M.
,
Hashimoto
,
T.
,
Hasegawa
,
S.
,
Yoshida
,
Y.
, and
Nakamura
,
N.
,
2006
, “
Effect of the Casing Configurations on the Internal Flow in Rocket Pump Inducer
,” AIAA Paper No. 2006-5071.10.2514/6.2006-5071
15.
Choi
,
Y.
,
Kurokawa
,
J.
, and
Imamura
,
H.
,
2007
, “
Suppression of Cavitation in Inducers by J-Grooves
,”
ASME J. Fluids Eng.
,
129
(
1
), pp.
15
22
.10.1115/1.2375126
16.
Shimiya
,
N.
,
Fujii
,
A.
,
Horiguchi
,
H.
,
Uchiumi
,
M.
,
Kurokawa
,
J.
, and
Tsujimoto
,
Y.
,
2008
, “
Suppression of Cavitation Instabilities in an Inducer by J Groove
,”
ASME J. Fluids Eng.
,
130
(
2
), p.
021302
.10.1115/1.2829582
17.
Tomaru
,
H.
,
Ugajin
,
H.
,
Kawasaki
,
S.
, and
Nakano
,
M.
,
2007
, “
Suppression of Cavitation Surge in a Turbopump Inducer by the Backflow Restriction Step
,” AIAA Paper No. 2007-5538.10.2514/6.2007-5538
18.
Kang
,
D.
,
Arimoto
,
Y.
,
Yonezawa
,
K.
,
Horiguchi
,
H.
,
Kawata
,
Y.
,
Hah
,
C.
, and
Tsujimoto
,
Y.
,
2010
, “
Suppression of Cavitation Instabilities in an Inducer by Circumferential Groove and Explanation of Higher Frequency Components
,”
Int. J. Fluid Mach. Syst.
,
3
(
2
), pp.
137
149
.10.5293/IJFMS.2010.3.2.137
19.
Tanaka
,
Y.
,
Kitabata
,
T.
,
Nasu
,
K.
,
Watanabe
,
S.
, and
Sakata
,
A.
,
2022
, “
Suppression of Cavitation Surge in Turbopump With Inducer by Reduced-Diameter Suction Pipe With Swirl Brake
,”
ASME J. Fluids Eng.
,
144
(
7
), p.
071205
.10.1115/1.4052926
20.
Kowata
,
A.
,
Kawasaki
,
S.
, and
Iga
,
Y.
,
2022
, “
Numerical Analysis of the Effect of Slit Shape on the Performance and Cavitation Instability of Liquid Rocket Inducer
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
1037
(
1
), p.
012030
.10.1088/1755-1315/1037/1/012030
21.
Kamikura
,
Y.
,
Kobayashi
,
H.
,
Kawasaki
,
S.
, and
Iga
,
Y.
,
2019
, “
Three Dimensional Numerical Analysis of Inducer About Suppression of Cavitation Instabilities by Asymmetric Slits on Blades
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
240
(
3
), p.
032044
.10.1088/1755-1315/240/3/032044
22.
Kanamaru
,
M.
,
Kamikura
,
Y.
,
Kawasaki
,
S.
, and
Shimura
,
T.
,
2019
, “
An Experimental Study of Influence of Slit in Throat Position on Suppression of Cavitation Instabilities in Liquid Propellant Rocket Inducer
,” ASME Paper No. AJKFluids2019-4838.10.1115/AJKFluids2019-4838
23.
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Yoshida
,
Y.
,
1993
, “
A Theoretical Analysis of Rotating Cavitation in Inducers
,”
ASME J. Fluids Eng.
,
115
(
1
), pp.
135
141
.10.1115/1.2910095
24.
Watanabe
,
S.
, and
Tsujimoto
,
Y.
,
2021
, “
Prediction of Cavitation Surge Onset Point by One-Dimensional Stability Analysis
,”
Int. J. Fluid Mach. Syst.
,
14
(
2
), pp.
199
207
.10.5293/IJFMS.2021.14.2.199
25.
Iga
,
Y.
,
Nohml
,
M.
,
Goto
,
A.
, and
Ikohagi
,
T.
,
2004
, “
Numerical Analysis of Cavitation Instabilities Arising in the Three-Blade Cascade
,”
ASME J. Fluids Eng.
,
126
(
3
), pp.
419
429
.10.1115/1.1760539
26.
Iga
,
Y.
,
Hiranuma
,
M.
,
Yoshida
,
Y.
, and
Ikohagi
,
T.
,
2008
, “
Numerical Analysis of Cavitation Instabilities and the Suppression in Cascade
,”
J. Environ. Eng.
,
3
(
2
), pp.
240
249
.10.1299/jee.3.240
27.
Iga
,
Y.
, and
Yoshida
,
Y.
,
2011
, “
Mechanism of Propagation Direction of Rotating Cavitations in a Cascade
,”
J. Propul. Power
,
27
(
3
), pp.
675
683
.10.2514/1.49454
28.
Horiguchi
,
H.
,
Watanabe
,
S.
,
Tsujimoto
,
Y.
, and
Aoki
,
M.
,
2000
, “
A Theoretical Analysis of Alternate Blade Cavitation in Inducers
,”
ASME J. Fluids Eng.
,
122
(
1
), pp.
156
163
.10.1115/1.483238
29.
Horiguchi
,
H.
,
Watanabe
,
S.
, and
Tsujimoto
,
Y.
,
2000
, “
A Linear Stability Analysis of Cavitation in a Finite Blade Count Impeller
,”
ASME J. Fluids Eng.
,
122
(
4
), pp.
798
805
.10.1115/1.1315300
30.
Kimura
,
T.
,
Yoshida
,
Y.
,
Hashimoto
,
T.
, and
Shimagaki
,
M.
,
2008
, “
Numerical Simulation for Vortex Structure in a Turbopump Inducer: Close Relationship With Appearance of Cavitation Instabilities
,”
ASME J. Fluids Eng.
,
130
(
5
), p.
051104
.10.1115/1.2911678
31.
Tani
,
N.
,
Yamanishi
,
N.
, and
Tsujimoto
,
Y.
,
2012
, “
Influence of Flow Coefficient and Flow Structure on Rotational Cavitation in Inducer
,”
ASME J. Fluids Eng.
,
134
(
2
), p.
021302
.10.1115/1.4005903
32.
Yamamoto
,
K.
,
Ukai
,
S.
,
Fukuda
,
T.
,
Kawasaki
,
S.
, and
Negishi
,
H.
,
2023
, “
Establishment of Prediction Model for Cavitation Surge Frequency and Onset in an Inducer Considering Dynamic Characteristics of Cavitation Compliance and Mass Flow Gain Factor
,”
ASME J. Fluids Eng.
,
145
(
9
), p.
091501
.10.1115/1.4062377
33.
Tsujimoto
,
Y.
,
Yoshida
,
Y.
,
Maekawa
,
Y.
,
Watanabe
,
S.
, and
Hashimoto
,
T.
,
1997
, “
Observations of Oscillating Cavitation of an Inducer
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
775
781
.10.1115/1.2819497
34.
Hashimoto
,
T.
,
Yoshida
,
M.
,
Watanabe
,
M.
,
Kamijo
,
K.
, and
Tsujimoto
,
Y.
,
1997
, “
Experimental Study on Rotating Cavitation of Rocket Propellant Pump Inducers
,”
J. Propul. Power
,
13
(
4
), pp.
488
494
.10.2514/2.5210
35.
Shimagaki
,
M.
,
Hashimoto
,
T.
,
Watanabe
,
M.
,
Hasegawa
,
S.
,
Nakamura
,
N.
, and
Shimura
,
T.
,
2006
, “
Unsteady Pressure Fluctuations in an Inducer
,”
JSME Int. J., Ser. B
,
49
(
3
), pp.
806
811
.10.1299/jsmeb.49.806
36.
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Brennen
,
C. E.
,
2001
, “
Unified Treatment of Flow Instabilities of Turbomachines
,”
J. Propul. Power
,
17
(
3
), pp.
636
643
.10.2514/2.5790
37.
Yoshida
,
Y.
,
Kazami
,
Y.
,
Nagaura
,
K.
,
Shimagaki
,
M.
,
Iga
,
Y.
, and
Ikohagi
,
T.
,
2008
, “
Interaction Between Uneven Cavity Length and Shaft Vibration at the Inception of Synchronous Rotating Cavitation
,”
Int. J. Rotating Mach.
,
2008
, pp.
1
7
.10.1155/2008/218978
38.
Yoshida
,
Y.
,
Nanri
,
H.
,
Kikuta
,
K.
,
Kazami
,
Y.
,
Iga
,
Y.
, and
Ikohagi
,
T.
,
2011
, “
Thermodynamic Effect on Subsynchronous Rotating Cavitation and Surge Mode Oscillation in a Space Inducer
,”
ASME J. Fluids Eng.
,
133
(
6
), p.
061301
.10.1115/1.4004022
39.
Iga
,
Y.
,
Okajima
,
J.
,
Yamagichi
,
Y.
,
Sasaki
,
H.
, and
Ito
,
Y.
,
2023
, “
Thermodynamic Suppression Effect of Cavitation Arising in a Hydrofoil in 140 °C Hot Water
,”
ASME J. Fluids Eng.
,
145
(
1
), p.
011207
.10.1115/1.4055600
40.
Sugaya
,
K.
,
Ochiai
,
T.
,
Okajima
,
J.
, and
Iga
,
Y.
,
2021
, “
Experimental Study of Break-Off Frequency in Cavitation Disappearance Phenomenon on NACA16-012 Hydrofoil
,”
J. Phys.: Conf. Ser.
,
1909
(
1
), p.
012088
.10.1088/1742-6596/1909/1/012088
41.
Kolahan
,
A.
,
Roohi
,
E.
, and
Pendar
,
M. R.
,
2019
, “
Wavelet Analysis and Frequency Spectrum of Cloud Cavitation Around a Sphere
,”
Ocean Eng.
,
182
, pp.
235
247
.10.1016/j.oceaneng.2019.04.070
42.
Pendar
,
M. R.
,
Alavi
,
A.
, and
Roohi
,
E.
,
2023
, “
Identification of Frequency Modes and Spectral Content for Noise Suppression: Cavitation Flow Over 3-D Hydrofoil With Sinusoidal Leading Edge
,”
Int. J. Mod. Phys. C
,
34
(
06
), p.
2350074
.10.1142/S0129183123500742
43.
Brennen
,
C. E.
,
1994
,
Hydrodynamics of Pumps
,
Concepts ETI
,
White River Junction, VT
.
44.
Braisted
,
D. M.
, and
Brennen
,
C. E.
,
1980
, “
Auto-Oscillation of Cavitating Inducers
,”
Proceedings of the Symposium on Polyphase Flow and Transport Technology
,
R. A.
Bajura
, ed.,
West Virginia University
,
San Francisco, CA, Aug. 13–15
, pp.
156
166
.
45.
Greitzer
,
E. M.
,
1981
, “
The Stability of Pumping Systems—The 1980 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
103
(
2
), pp.
193
242
.10.1115/1.3241725
46.
Watanabe
,
S.
,
Yamaoka
,
W.
, and
Furukawa
,
A.
,
2014
, “
Unsteady Lift and Drag Characteristics of Cavitating Clark Y-11.7% Hydrofoil
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
5
), p.
052009
.10.1088/1755-1315/22/5/052009
47.
Kawakami
,
D. T.
,
Fuji
,
A.
,
Tsujimoto
,
Y.
, and
Arndt
,
R. E. A.
,
2008
, “
An Assessment of the Influence of Environmental Factors on Cavitation Instabilities
,”
ASME J. Fluids Eng.
,
130
(
3
), p.
031303
.10.1115/1.2842146
48.
Pham
,
T. M.
,
Larrarte
,
F.
, and
Fruman
,
D. H.
,
1999
, “
Investigation of Unsteady Sheet Cavitation and Cloud Cavitation Mechanisms
,”
ASME J. Fluids Eng.
,
121
(
2
), pp.
289
296
.10.1115/1.2822206
49.
Lohrberg
,
H.
,
Stoffel
,
B.
,
Fortes-Patella
,
R.
,
Coutier-Delgosha
,
O.
, and
Reboud
,
J.
,
2002
, “
Numerical and Experimental Investigations on the Cavitating Flow in a Cascade of Hydrofoils
,”
Exp. Fluids
,
33
(
4
), pp.
578
586
.10.1007/s00348-002-0508-6
50.
Iga
,
Y.
,
Nohmi
,
M.
,
Goto
,
A.
,
Shin
,
B. R.
, and
Ikohagi
,
T.
,
2003
, “
Numerical Study of Sheet Cavitation Breakoff Phenomenon on a Cascade Hydrofoil
,”
ASME J. Fluids Eng.
,
125
(
4
), pp.
643
651
.10.1115/1.1596239
51.
Kjeldsen
,
M.
,
Arndt
,
R. E.
, and
Effertz
,
M.
,
2000
, “
Spectral Characteristics of Sheet/Cloud Cavitation
,”
ASME J. Fluids Eng.
,
122
(
3
), pp.
481
487
.10.1115/1.1287854
52.
Sato
,
K.
,
Tanada
,
M.
,
Monden
,
S.
, and
Tsujimoto
,
Y.
,
2002
, “
Observation of Oscillating Cavitation on a Flat Plate Hydrofoil
,”
JSME Int. J., Ser. B
,
45
(
3
), pp.
646
654
.10.1299/jsmeb.45.646
53.
Le
,
Q.
,
Franc
,
J. P.
, and
Michel
,
J. M.
,
1993
, “
Partial Cavities: Global Behavior and Mean Pressure Distribution
,”
ASME J. Fluids Eng.
,
115
(
2
), pp.
243
248
.10.1115/1.2910131
54.
Wade
,
E. B.
, and
Acosta
,
A. J.
,
1966
, “
Experimental Observations on the Flow Past a Plano-Convex Hydrofoil
,”
ASME J. Basic Eng.
,
88
(
1
), pp.
273
282
.10.1115/1.3645828
55.
Iga
,
Y.
, and
Yoshida
,
Y.
,
2014
, “
Influence of Pipe Length on Cavitation Surge Frequency in a Cascade
,”
J. Propul. Power
,
30
(
6
), pp.
1520
1527
.10.2514/1.B35229
56.
Shimura
,
T.
,
1995
, “
Geometry Effects in the Dynamic Response of Cavitating LE-7 Liquid Oxygen Pump
,”
J. Propul. Power
,
11
(
2
), pp.
330
336
.10.2514/3.51429
57.
Hori
,
S.
, and
Brennen
,
C. E.
,
2011
, “
Dynamic Response to Global Oscillation of Propulsion Systems With Cavitating Pumps
,”
J. Spacecr. Rockets
,
48
(
4
), pp.
599
608
.10.2514/1.51945
58.
Rubin
,
S.
,
2004
, “
An Interpretation of Transfer Function Data for a Cavitating Pump
,”
AIAA
Paper No. 2004-4025.10.2514/6.2004-4025
59.
Brennen
,
C. E.
,
2013
, “
A Review of the Dynamics of Cavitating Pumps
,”
ASME J. Fluids Eng.
,
135
(
6
), p.
061301
.10.1115/1.4023663
60.
Ghahremani
,
F. G.
, and
Rubin
,
S.
,
1972
, “
Empirical Evaluation of Pump Inlet Compliance
,” NASA, Washington, DC, Report No. NASA-CR-123963.
You do not currently have access to this content.