Abstract

The flow-induced rotation of the modified Savonius rotor, for which the blade consists of a semicircular profile and an elliptical shape, is studied using a series of unsteady computational fluid dynamics (CFD) simulations. This study first concentrates on the validation of the numerical scheme against Blackwell's experimental data of the conventional rotor. The computed flow physics around the modified rotor with the same diameter is then analyzed and compared with that of the conventional rotor during one rotation cycle. As the result, the modified rotor is outperforming the conventional one but keeping its unique features. The modified rotor offers exceeding performance at a tip speed ratio (TSR) greater than 0.8. The new peak of the power coefficient Cp is reached at TSR = 1.4 which is a typical operating condition of the wind turbine in urban areas. The remarkable finding is that the suppression of the flow separation on the blade is an effective way to improve the rotor's aerodynamic performance. As expected, the additional elliptical profile plays a key role in increasing the positive torque and in preventing the flow separation on the blade, especially at high TSR > 0.8. Finally, this study points to not only advances the fundamental understanding of flow mechanism around the rotor but also proposes a good practical energy harvesting application in urban environments.

References

1.
Savonius
,
S. J.
,
1931
, “
The S-Rotor and Its Application
,”
Mech. Eng.
,
53
, pp.
333
–33
8
.
2.
Joselin Herbert
,
G. M.
,
Iniyan
,
S.
,
Sreevalsan
,
E.
, and
Rajapandian
,
S.
,
2007
, “
A Review of Wind Energy Technology
,”
Renewable Sustainable Energy Rev
,
11
(
6
), pp.
1117
–11
45
.10.1016/j.rser.2005.08.004
3.
El-Askary
,
W. A.
,
Nasef
,
M. H.
,
Abdel-Hamid
,
A. A.
, and
Gad
,
H. E.
,
2015
, “
Harvesting Wind Energy for Improving the Performance of Savonius Rotor
,”
J. Wind Eng. Ind. Appl.
,
139
, pp.
8
15
.10.1016/j.jweia.2015.01.003
4.
Setiawan
,
P. A.
,
Yuwono
,
T.
,
Widodo
,
W. A.
,
Julianto
,
E.
, and
Santoso
,
M.
,
2019
, “
Numerical Study of a Circular Cylinder Effect on the Vertical Axis Savonius Water Turbine Performance at the Side of the Advancing Blade With Horizontal Distance Variations
,”
Inter. J. Renewable Energy Res.
,
9
(
2
), pp.
978
985
.https://www.researchgate.net/publication/337972089_Numerical_Study_of_a_Circular_Cylinder_Effect_on_the_Vertical_Axis_Savonius_Water_Turbine_Performance_at_the_Side_of_the_Advancing_Blade_with_Horizontal_Distance_Variations
5.
Sharma
,
S.
, and
Sharma
,
R. K.
,
2016
, “
Performance Improvement of Savonius Rotor Using Multiple Quarter Blades – A CFD Investigation
,”
Energy Convers. Manage.
,
127
, pp.
43
54
.10.1016/j.enconman.2016.08.087
6.
Blackwell
,
B. F.
,
Sheldahl
,
R. E.
, and
Feltz
,
L. V.
,
1977
, “
Wind Tunnel Performance Data for Two and Three-Bucket Savonius Rotors
,” National Tech. Information Service, U. S. Dept. Commerce, Springfield, Report No. SAND76-01321 UC-60.
7.
Al-Faruk
,
A.
, and
Sharifian
,
A.
,
2014
, “Influence of
Blade Overlap and Blade Angle on the Aerodynamic Coefficients in Vertical Axis Swirling Type Savonius Wind Turbine
,” 19th
Australasian Fluid Mechanics Conference
, Melbourne, Australia, Dec. 8–11.https://www.researchgate.net/publication/280918046_Influence_of_Blade_Overlap_and_Blade_Angle_on_the_Aerodynamic_Coefficients_in_Vertical_Axis_Swirling_type_Savonius_Wind_Turbine
8.
Tian
,
W.
,
Mao
,
Z.
,
Zhang
,
B.
, and
Li
,
Y.
,
2018
, “
Shape Optimization of a Savonius Wind Rotor With Different Convex and Concave Sides
,”
Renewable Energy
,
117
, pp.
287
299
.10.1016/j.renene.2017.10.067
9.
Saeed
,
H. A. H.
,
Elmekawy
,
A. M. N.
, and
Kassab
,
S. Z.
,
2019
, “
Numerical Study of Improving Savonius Turbine Power Coefficient by Various Blade Shapes
,”
Alexandria Eng. J.
,
58
(
2
), pp.
429
441
.10.1016/j.aej.2019.03.005
10.
Kerikous
,
E.
, and
Thevenin
,
D.
,
2019
, “
Optimal Shape of Thick Blades for a Hydraulic Savonius Turbine
,”
Renewable Energy
,
134
, pp.
629
638
.10.1016/j.renene.2018.11.037
11.
Bach
,
G. V.
,
1931
, “
Untersuchungen Uber Savonius-Rotoren Und Verwandte Stromungsmaschinen
,”
Forsch. Geb. Ing.
,
2
(
6
), pp.
218
231
.10.1007/BF02579117
12.
Kamoji
,
M. A.
,
Kedare
,
S. B.
, and
Prabhu
,
S. V.
,
2009
, “
Experimental Investigations on Single Stage Modified Savonius Rotor
,”
Appl. Energy
,
86
(
7–8
), pp.
1064
1073
.10.1016/j.apenergy.2008.09.019
13.
Kacprzak
,
K.
,
Liskiewicz
,
G.
, and
Sobczak
,
K.
,
2013
, “
Numerical Investigation of Conventional and Modified Savonius Wind Turbines
,”
Renewable Energy
,
60
, pp.
578
85
.10.1016/j.renene.2013.06.009
14.
Lee
,
J.-H.
,
Lee
,
Y.-T.
, and
Lim
,
H.-C.
,
2016
, “
Effect of Twist Angle on the Performance of Savonius Wind Turbine
,”
Renewable Energy
,
89
, pp.
231
244
.10.1016/j.renene.2015.12.012
15.
Elmekawy
,
A. M. N.
,
Saeed
,
H. A. H.
, and
Kassab
,
S. Z.
,
2021
, “
Performance Enhancement of Savonius Wind Turbine by Blade Shape and Twisted Angle Modifications
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
, 235(6), pp.1487–1500.10.1177/0957650920987942
16.
Zhang
,
B.
,
Song
,
B.
,
Mao
,
Z.
,
Tian
,
W.
,
Li
,
B.
, and
Li
,
B.
,
2017
, “
A Novel Parametric Modeling Method and Optimal Design for Savonius Wind Turbines
,”
Energies
,
10
(
3
), p.
301
.10.3390/en10030301
17.
Chan
,
C. M.
,
Bai
,
H. L.
, and
He
,
D. Q.
,
2018
, “
Blade Shape Optimization of the Savonius Wind Turbine Using a Genetic Algorithm
,”
Appl. Energy
,
213
, pp.
148
157
.10.1016/j.apenergy.2018.01.029
18.
Zemamou
,
M.
,
Toumi
,
A.
,
Mrigua
,
K.
,
Lahlou
,
Y.
, and
Aggour
,
M.
,
2020
, “
A Novel Blade Design for Savonius Wind Turbine Based on Polynomial Bezier Curves for Aerodynamic Performance Enhancement
,”
Int. J. Green Energy
,
17
(
11
), pp.
652
665
.10.1080/15435075.2020.1779077
19.
Borzuei
,
D.
,
Moosavian
,
S. F.
, and
Farajollahi
,
M.
,
2021
, “
On the Performance Enhancement of the Three-Blade Savonius Wind Turbine Implementing Opening Valve
,”
ASME J. Energy. Resour. Technol
,
143
(
5
), p.
051301
.10.1115/1.4049460
20.
Alexander
,
A. S.
, and
Santhanakrishnan
,
A.
,
2018
, “
Trapped Cylindrical Flow With Multiple Inlets for Savonius Vertical Axis Wind Turbines
,”
ASME J. Fluids Eng.
,
140
(
4
), p.
044501
.10.1115/1.4038166
21.
Abohela
,
I.
,
Hamza
,
N.
, and
Dudek
,
S.
,
2013
, “
Effect of Roof Shape, Wind Direction, Building Height and Urban Configuration on the Energy Yield and Positioning of Roof-Mounted Wind Turbines
,”
Renewable Energy
,
50
, pp.
1106
1118
.10.1016/j.renene.2012.08.068
22.
Casani
,
M.
,
2016
, “
Small Vertical Axis Wind Turbines for Energy Efficiency of Buildings
,”
J. Clean Energy Technol.
,
4
(
1
), pp.
56
65
.10.7763/JOCET.2016.V4.254
23.
Goh
,
S. C.
, and
Schluter
,
J. U.
,
2016
, “
Numerical Simulation of a Savonius Turbine Above an Infinite-Width Forward-Facing Step
,”
Wind Eng.
,
40
(
2
), pp.
134
147
.10.1177/0309524X15624619
24.
Praveen
,
L.
,
Bethi
,
R. V.
,
Kumar
,
P.
, and
Mitra
,
S.
,
2018
, “
Improved Design of Savonius Rotor for Green Energy Production From Moving Singapore Metropolitan Rapid Transit Train Inside Tunnel
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
, 233(7), pp.
2426
2441
.10.1177/0954406218784620
25.
Bethi
,
R. V.
,
Praveen
,
L.
,
Kumar
,
P.
, and
Mitra
,
S.
,
2019
, “
Modified Savonius Wind Turbine for Harvesting Wind Energy From Trains Moving in Tunnels
,”
Renewable Energy
,
135
, pp.
1056
1063
.10.1016/j.renene.2018.12.010
26.
He
,
K.
,
Gao
,
G.-J.
,
Wang
,
J.-B.
,
Fu
,
M.
,
Miao
,
X.-J.
, and
Zhang
,
J.
,
2018
, “
Performance of a Turbine Driven by Train-Induced Wind in a Tunnel
,”
Tunnel. Underground Space Technol.
,
82
, pp.
416
427
.10.1016/j.tust.2018.08.042
27.
Naccache
,
G.
, and
Paraschivoiu
,
M.
,
2017
, “
Development of the Dual Vertical Axis Wind Turbine Using Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
139
(
12
), p.
121105
.10.1115/1.4037490
28.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Bachant
,
P.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2017
, “
Effectiveness of Two-Dimensional CFD Simulations for Darrieus VAWTs: A Combined Numerical and Experimental Assessment
,”
Energy Convers. Manag.
,
136
, pp.
318
328
.10.1016/j.enconman.2017.01.026
29.
Ostos
,
I.
,
Ruiz
,
I.
,
Gajic
,
M.
,
Gomez
,
W.
,
Bonilla
,
A.
, and
Collazos
,
C.
,
2019
, “
A Modified Novel Blade Configuration Proposal for a More Efficient VAWT Using CFD Tools
,”
Energy Convers. Manage.
,
180
, pp.
733
746
.10.1016/j.enconman.2018.11.025
30.
Ansys
,
Fluent 12.0 Theory Manual
, Release 12.0 ANSYS, Inc. 2009-01-23.
31.
Belabes
,
B.
,
Youcefi
,
A.
, and
Paraschivoiu
,
M.
,
2016
, “
Numerical Investigation of Savonius Wind Turbine Farms
,”
J. Renewable Sustainable Energy
,
8
(
5
), p.
053302
.10.1063/1.4963688
32.
Layeghmand
,
K.
,
Tabari
,
N., G.
, and
Zarkesh
,
M.
,
2020
, “
Improving the Efficiency of Savonius Wind Turbine by Mean of an Airfoil-Shaped Deflector
,”
J. Brazil. Soc. Mech. Sci. Eng.
,
42
, p.
528
.10.1007/s40430-020-02598-7
33.
Alaimo
,
A.
,
Esposito
,
A.
,
Milazzo
,
A.
,
Orlando
,
C.
, and
Trentacosti
,
F.
,
2013
, “
Slotted Blades Savonius Wind Turbine Analysis by CFD
,”
Energies
,
6
(
12
), pp.
6335
6351
.10.3390/en6126335
34.
Nobile
,
R.
,
Vahdati
,
M.
,
Barlow
,
J. F.
, and
Mewburn-Crook
,
A.
,
2014
, “
Unsteady Flow Simulation of a Vertical Axis Augmented Wind Turbine: A Two-Dimensional Study
,”
J. Wind Eng. Ind. Aerodyn.
,
125
, pp.
168
179
.10.1016/j.jweia.2013.12.005
35.
Ferrari
,
G.
,
Federici
,
D.
,
Schito
,
P.
,
Inzoli
,
F.
, and
Mereu
,
R.
,
2017
, “
CFD Study of Savonius Wind Turbine: 3D Model Validation and Parametric Analysis
,”
Renewable Energy
,
105
, pp.
722
734
.10.1016/j.renene.2016.12.077
You do not currently have access to this content.