Abstract

The wheels of a passenger vehicle are one of the major contributors to the total aerodynamic drag, making their aerodynamic performance a considerable factor for the overall energy efficiency of the vehicle. Previous studies have shown that the complex flow field created by the wheels is sensitive to small geometrical variations of the tyre and that features such as shoulder profile and tread pattern can have a significant impact on drag and lift. In this study, the DrivAer model is used to evaluate the flow fields and aerodynamics of four tyre tread patterns with two rim designs. Full-scale wind tunnel tests were conducted where forces, surface pressures and flow fields were measured. Numerical simulations were also performed to aid the analysis. Using a slick tyre as the reference, it was found that rain grooves typically reduced the drag, whereas the effect of lateral grooves was dependent on the rim configuration. For the lift forces, the largest lift variations were obtained for the front lift which, in general, was reduced by rain grooves and increased by lateral grooves, most notably for the closed rim. The importance of considering the parasitic lift force acting on the wheel drive units when comparing experiments and simulations was demonstrated.

References

1.
Hucho
,
W.-H.
,
1998
,
Aerodynamics of Road Vehicles
, 4th ed.,
SAE International
,
Warrendale, PA
.
2.
Cogotti
,
A.
,
1983
, “
Aerodynamic Characteristics of Car Wheels
,”
Int. J. Veh. Des.
, SP3, pp.
173
196
.
3.
Wickern
,
G.
,
Zwicker
,
K.
, and
Pfadenhauer
,
M.
,
1997
, “
Rotating Wheels - Their Impact on Wind Tunnel Test Techniques and on Vehicle Drag Results
,”
SAE Trans.
,
106
, pp.
254
270
.
4.
Wickern
,
G.
, and
Beese
,
E.
,
2002
, “
Computational and Experimental Evaluation of a Pad Correction for a Wind Tunnel Balance Equipped for Rotating Wheels
,”
SAE
Paper No. 2002-01-0532.10.4271/2002-01-0532
5.
Ljungskog
,
E.
,
Sebben
,
S.
, and
Broniewicz
,
A.
,
2019
, “
Inclusion of the Physical Wind Tunnel in Vehicle CFD Simulations for Improved Prediction Quality
,”
J. Wind Eng. Ind. Aerodyn.
,
197
, pp.
1
10
.10.1016/j.jweia.2019.104055
6.
Fackrell
,
J. E.
, and
Harvey
,
J. K.
,
1973
, “
The Flow Field and Pressure Distribution of an Isolated Road Wheel
,”
Advanced Road Vehicles Aerodynamics
, Vol.
10
, pp.
155
165
.
7.
McManus
,
J.
, and
Zhang
,
X.
,
2006
, “
A Computational Study of the Flow Around an Isolated Wheel in Contact With the Ground
,”
ASME J. Fluids Eng.
,
128
(
3
), pp.
520
530
.10.1115/1.2175158
8.
Croner
,
E.
,
Bézard
,
H.
,
Sicot
,
C.
, and
Mothay
,
G.
,
2013
, “
Aerodynamic Characterization of the Wake of An Isolated Rolling Wheel
,”
Int. J. Heat Fluid Flow
,
43
, pp.
233
243
.10.1016/j.ijheatfluidflow.2013.04.008
9.
Axerio-Cilies
,
J.
, and
Iaccarino
,
G.
,
2012
, “
An Aerodynamic Investigation of an Isolated Rotating Formula 1 Wheel Assembly
,”
ASME J. Fluids Eng.
,
134
(
12
), p.
121101
.10.1115/1.4007890
10.
Fu
,
G.
, and
Untaroiu
,
A.
,
2021
, “
Investigation of Tire Rotating Modeling Techniques Using Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
143
(
11
), p.
111206
.10.1115/1.4051311
11.
Krajnović
,
S.
,
Sarmast
,
S.
, and
Basara
,
B.
,
2011
, “
Numerical Investigation of the Flow Around a Simplified Wheel in a Wheelhouse
,”
ASME J. Fluids Eng.
,
133
(
11
), p.
111001
.10.1115/1.4004992
12.
Driant
,
T.
,
Remaki
,
L.
,
Fellouah
,
H.
,
Moreau
,
S.
, and
Desrochers
,
A.
,
2013
, “Aerodynamic Study of a Tricycle Wheel Subsystem for Drag Reduction,”
ASME J. Fluids Eng.
,
136
(
1
), p.
014502
.10.1115/1.4025644
13.
Elofsson
,
P.
, and
Bannister
,
M.
,
2002
, “
Drag Reduction Mechanisms Due to Moving Ground and Wheel Rotation in Passenger Cars
,”
SAE
Paper No. 2002-01-0531.10.4271/2002-01-0531
14.
Wäschle
,
A.
,
2007
, “
The Influence of Rotating Wheels on Vehicle Aerodynamics - Numerical and Experimental Investigations
,”
SAE
Paper No. 2007-01-0107.10.4271/2007-01-0107
15.
Wittmeier
,
F.
,
Kuthada
,
T.
,
Widdecke
,
N.
, and
Wiedemann
,
J.
,
2014
, “
Model Scale Based Process for the Development of Aerodynamic Tire Characteristics
,”
SAE
Paper No. 2014-01-0585.10.4271/2014-01-0585
16.
Gray
,
M.
,
Kuthada
,
T.
,
Chang
,
J. H.
,
Kim
,
H.-L.
,
Lee
,
E.
, and
Park
,
M.
,
2019
, “
Improved Methodology for Realistic Representation of Rotating Wheels in CFD Applications
,”
Progress in Vehicle Aerodynamics and Thermal Management
, Stuttgart, Germany, Oct. 1-2, Paper No. 1.1.3.
17.
Schnepf
,
B.
,
Schütz
,
T.
, and
Indinger
,
T.
,
2015
, “
Further Investigations on the Flow Around a Rotating, Isolated Wheel With Detailed Tread Pattern
,”
SAE Int. J. Passenger Cars Mech. Syst.
,
8
(
1
), pp.
261
274
.10.4271/2015-01-1554
18.
Hobeika
,
T.
, and
Sebben
,
S.
,
2018
, “
CFD Investigation on Wheel Rotation Modelling
,”
J. Wind Eng. Ind. Aerodyn.
,
174
, pp.
241
251
.10.1016/j.jweia.2018.01.005
19.
Reiß
,
J.
,
Haag
,
L.
, and
Indinger
,
T.
,
2019
, “
CFD Investigation on Fully Detailed and Deformed Car Tires
,”
Int. J. Automot. Eng.
,
10
(
4
), pp.
324
331
.10.20485/jsaeijae.10.4_324
20.
Croner
,
E.
,
2014
, “
Etude de l'écoulement autour des ensembles roulants d'un véhicule en vue de l'optimisation aérodynamique du pneumatique
,” Ph.D. thesis,
Université de Toulouse
, Toulouse, France.
21.
Wang
,
Y.
,
Sicot
,
C.
,
Borée
,
J.
, and
Grandemange
,
M.
,
2020
, “
Experimental Study of Wheel-Vehicle Aerodynamic Interactions
,”
J. Wind Eng. Ind. Aerodyn.
,
198
, p.
104062
.10.1016/j.jweia.2019.104062
22.
Mercker
,
E.
,
Breuer
,
N.
,
Berneburg
,
H.
, and
Emmelmann
,
H.
,
1991
, “
On the Aerodynamic Interference Due to the Rolling Wheels of Passenger Cars
,”
SAE
Paper No. 910311.10.4271/910311
23.
Hobeika
,
T.
, and
Sebben
,
S.
,
2018
, “
Tyre Pattern Features and Their Effects on Passenger Vehicle Drag
,”
SAE Int. J. Passenger Cars Mech. Syst.
,
11
(
5
), pp.
401
413
.10.4271/2018-01-0710
24.
Heft
,
A. I.
,
Indinger
,
T.
, and
Adams
,
N. A.
,
2012
, “
Introduction of a New Realistic Generic Car Model for Aerodynamic Investigations
,”
SAE
Paper No. 2012-01-0168.10.4271/2012-01-0168
25.
Hupertz
,
B.
,
Krüger
,
L.
,
Chalupa
,
K.
,
Lewington
,
N.
,
Luneman
,
B.
,
Costa
,
P.
,
Kuthada
,
T.
, and
Collin
,
C.
,
2018
, “
Introduction of a New Full-Scale Open Cooling Version of the DrivAer Generic Car Model
,”
Progress in Vehicle Aerodynamics and Thermal Management
,
Springer International Publishing
, Cham, Switzerland, pp.
35
60
.
26.
Hupertz
,
B.
,
Chalupa
,
K.
,
Krueger
,
L.
,
Howard
,
K.
,
Glueck
,
H.-D.
,
Lewington
,
N.
,
Chang
,
J.-H.
, and
Shin
,
Y-s.
,
2021
, “
On the Aerodynamics of the Notchback Open Cooling DrivAer: A Detailed Investigation of Wind Tunnel Data for Improved Correlation and Reference
,”
SAE
Paper No. 2021-01-0958.10.4271/2021-01-0958
27.
Ashton
,
N.
,
Skaperdas
,
V.
,
Sinclair
,
O.
, and
Van Noordt
,
W.
,
2019
, “
First Automotive CFD Prediction Workshop, Cross-Plotting - Case2a/b
,” accessed Aug. 21, 2021, https://autocfd1.s3.eu-west-1.amazonaws.com/Presentations/Case2-summary-v2.pdf
28.
Sternéus
,
J.
,
Walker
,
T.
, and
Bender
,
T.
,
2007
, “
Upgrade of the Volvo Cars Aerodynamic Wind Tunnel
,”
SAE Paper No. 2007-01-1043.
29.
Aeroprobe Corporation
,
2015
, “
Standard Probes User Manual
,”
Aeroprobe Corporation
, Christiansburg, VA.
30.
Sterken
,
L.
,
Sebben
,
S.
,
Walker
,
T.
, and
Löfdahl
,
L.
,
2013
, “
Experimental and Numerical Investigations of the Base Wake on an SUV
,”
SAE
Paper No. 2013-01-0464.10.4271/2013-01-0464
31.
Davidson
,
L.
,
2009
, “
Large Eddy Simulations: How to Evaluate Resolution
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
1016
1025
.10.1016/j.ijheatfluidflow.2009.06.006
32.
Josefsson
,
E.
,
Hobeika
,
T.
, and
Sebben
,
S.
,
2022
, “
Evaluation of Wind Tunnel Interference on Numerical Prediction of Wheel Aerodynamics
,”
J. Wind Eng. Ind. Aerodyn.
,
224
, p.
104945
.10.1016/j.jweia.2022.104945
33.
Koitrand
,
S.
,
Gaylard
,
A.
, and
Fiet
,
G. O.
,
2015
, “
An Investigation of Wheel Aerodynamic Effects for a Saloon Car
,”
Proceedings of the Tenth FKFS-Conference
, Stuttgart, Germany, pp.
240
255
.
34.
Haag
,
L.
,
Kiewat
,
M.
,
Indinger
,
T.
, and
Blacha
,
T.
,
2017
, “
Numerical and Experimental Investigations of Rotating Wheel Aerodynamics on the DrivAer Model With Engine Bay Flow
,”
ASME
Paper No. FEDSM2017-69305.10.1115/FEDSM2017-69305
35.
Swedac
,
2020
, “
Ackrediteringsnr: 1375
,” Swedac, Borås, Sweden, accessed Mar. 24, 2022, https://search.swedac.se/sv/ackrediteringar/1375/a000753-004
36.
Nilsson
,
L.-U.
, and
Berndtsson
,
A.
,
1987
, “
The New Volvo Multipurpose Automotive Wind Tunnel
,”
SAE Trans.
,
96
, pp.
993
1017
.https://www.jstor.org/stable/44470082
37.
Ljungskog
,
E.
,
Sebben
,
S.
, and
Broniewicz
,
A.
,
2019
, “
Uncertainty Quantification of Flow Uniformity Measurements in a Slotted Wall Wind Tunnel
,”
SAE
Paper No. 2019-01-0656.10.4271/2019-01-0656
38.
Celik
,
I. B.
,
Urmila
,
G.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
You do not currently have access to this content.