Abstract

In this study, computational fluid dynamics analysis was performed on a three-dimensional (3D) model of a Libellulidae wing to determine aerodynamic performance in gliding flight. The wing is comprised of various corrugated features alongside the spanwise and chordwise directions, as well as twist. The detailed features of real 3D dragonfly wing models, including all the corrugations through both span and chord, have not been considered in the past for a detailed aerodynamic analysis. The simulations were conducted by solving the Navier–Stokes equations to demonstrate gliding performance over a range of angles of attack at low Reynolds numbers. The numerical model was validated against experimental data obtained from a fabricated corrugated wing model using particle image velocimetry. The numerical results demonstrate that bio-inspired wings with corrugations compared to flat profile wings generate more lift with lower drag, trapping the vortices in the valleys of wing corrugation leading to delayed flow separation and delayed stall. The experimental and numerical results demonstrate that the methodology presented in this study can be used to measure bio-inspired 3D wing flow characteristics, including the influence of complex corrugations on aerodynamic performance. These findings contribute to the advancement of knowledge required for designing an optimized bio-inspired micro-air vehicle.

References

1.
Chitsaz
,
N.
,
Marian
,
R.
, and
Chahl
,
J.
,
2019
, “
Bio-Inspired Flapping-Wing Micro Air Vehicles Material Properties and Evolutionary Fabrication
,”
Proceedings of the AIAC18: 18th Australian International Aerospace Congress (2019): HUMS—11th Defence Science and Technology (DST) International Conference on Health and Usage Monitoring (HUMS 2019): ISSFD—27th International Symposium on Space Flight Dynamics (ISSFD)
,
Melbourne, Australia
, Feb. 24–28; Engineers Australia,
Royal Aeronautical Society, Melbourne
,
Australia
, pp.
425
430
.https://search.informit.org/doi/10.3316/informit.322430639468479
2.
Murphy
,
J. T.
, and
Hu
,
H.
,
2010
, “
An Experimental Study of a Bio-Inspired Corrugated Airfoil for Micro Air Vehicle Applications
,”
Exp. Fluids
,
49
(
2
), pp.
531
546
.10.1007/s00348-010-0826-z
3.
Tamai
,
M.
,
Wang
,
Z.
,
Rajagopalan
,
G.
,
Hu
,
H.
, and
He
,
G.
,
2007
, “
Aerodynamic Performance of a Corrugated Dragonfly Airfoil Compared With Smooth Airfoils at Low Reynolds Numbers
,”
AIAA
Paper No. 2007-483.
4.
Salami
,
E.
,
Ward
,
T. A.
,
Montazer
,
E.
, and
Ghazali
,
N. N. N.
,
2019
, “
A Review of Aerodynamic Studies On Dragonfly Flight
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
233
(
18
), pp.
6519
6537
.10.1177/0954406219861133
5.
Vargas
,
A.
,
Mittal
,
R.
, and
Dong
,
H.
,
2008
, “
A Computational Study of the Aerodynamic Performance of a Dragonfly Wing Section in Gliding Flight
,”
Bioinspiration Biomimetics
,
3
(
2
), p.
026004
10.1088/1748-3182/3/2/026004
6.
Chitsaz
,
N.
, and
Chahl
,
J.
,
2019
, “
Current Knowledge of Corrugated Dragonfly Wing Structures and Future Measurement Methodology
,”
Proceedings of the AIAC18: 18th Australian International Aerospace Congress (2019): HUMS—11th Defence Science and Technology (DST) International Conference on Health and Usage Monitoring (HUMS 2019): ISSFD—27th International Symposium on Space Flight Dynamics (ISSFD)
,
Melbourne, Australia
, Feb. 24–28; Engineers Australia,
Royal Aeronautical Society, Melbourne
,
Australia
,
pp.
412
417
.https://search.informit.org/doi/10.3316/INFORMIT.322393373525963
7.
Shi
,
S-X.
,
Liu
,
Y-Z.
, and
Chen
,
J-M.
,
2012
, “
An Experimental Study of low Around a Bio-Inspired Airfoil at Reynolds Number 2.0 × 103
,”
J. Hydrodyn., Ser. B
,
24
(
3
), pp.
410
419
.10.1016/S1001-6058(11)60262-X
8.
Okamoto
,
M.
,
Yasuda
,
K.
, and
Azuma
,
A.
,
1996
, “
Aerodynamic Characteristics of the Wings and Body of a Dragonfly
,”
J. Exp. Biol.
,
199
(
2
), pp.
281
294
.10.1242/jeb.199.2.281
9.
Hu
,
H.
, and
Tamai
,
M.
,
2008
, “
Bioinspired Corrugated Airfoil at Low Reynolds umbers
,”
J. Aircr.
,
45
(
6
), pp.
2068
2077
.10.2514/1.37173
10.
Shahzad
,
A.
,
Hamdani
,
H.
, and
Aizaz
,
A.
,
2017
, “
Investigation of Corrugated Wing in Unsteady Motion
,”
J. Appl. Fluid Mech.
,
10
(
3
), pp.
833
845
.10.18869/acadpub.jafm.73.240.26425
11.
Levy
,
D.-E.
, and
Seifert
,
A.
,
2009
, “
Simplified Dragonfly Airfoil Aerodynamics at Reynolds umbers Below 8000
,”
Phys. Fluids
,
21
(
7
), p.
071901
10.1063/1.3166867
12.
Ren
,
L.
, and
Li
,
X.
,
2013
, “
Functional Characteristics of Dragonfly Wings and Its Bionic Investigation Progress
,”
Sci. China Technol. Sci.
,
56
(
4
), pp.
884
897
.10.1007/s11431-013-5158-9
13.
Chitsaz
,
N.
,
Marian
,
R.
, and
Chahl
,
J.
,
2020
, “
Experimental Method for 3D Deconstruction of Odonata Wings (Methodology and Dataset)
,”
PLoS ONE,
15
(
4
), p.
e0232193
.10.1371/journal.pone.0232193
14.
Chitsaz
,
N.
,
Marian
,
R.
,
Chitsaz
,
A.
, and
Chahl
,
J. S.
,
2020
, “
Parametric and Statistical Study of the Wing Geometry of 75 Species of Odonata
,”
Appl. Sci.
,
10
(
15
), p.
5389
10.3390/app10155389
15.
Kesel
,
A. B.
,
2000
, “
Aerodynamic Characteristics of Dragonfly Wing Sections Compared With Technical Aerofoils
,”
J. Exp. Biol.
,
203
(
20
), pp.
3125
3135
.10.1242/jeb.203.20.3125
16.
Sooraj
,
P.
,
Sharma
,
A.
, and
Agrawal
,
A.
,
2020
, “
Dynamics of Co-Rotating Vortices in a Flow Around a Bio-Inspired Corrugated Airfoil
,”
Int. J. Heat Fluid Flow
,
84
, p.
108603
.10.1016/j.ijheatfluidflow.2020.108603
17.
Biradar
,
A.
,
Chandraker
,
A.
,
Madan
,
R.
,
Sanyal
,
S.
, and
Bhowmick
,
S.
,
2020
, “
Effect of Attack Angle on Lift and Drag of a Bio-Inspired Corrugated Aerofoil
,”
Innovative Product Design and Intelligent Manufacturing Systems
,
Springer
, Singapore, pp.
261
268
.https://link.springer.com/chapter/10.1007/978-981-15-2696-1_25
18.
Levy
,
D.-E.
, and
Seifert
,
A.
,
2010
, “
Parameter Study of Simplified Dragonfly Airfoil Geometry at Reynolds Number of 6000
,”
J. Theoretical Biol.
,
266
(
4
), pp.
691
702
.10.1016/j.jtbi.2010.07.016
19.
Chitsaz
,
N.
,
Siddiqui
,
K.
,
Marian
,
R.
, and
Chahl
,
J.
,
2021
, “
An Experimental Study of the Aerodynamics of Micro Corrugated Wings at Low Reynolds Number
,”
Exp. Therm. Fluid Sci.
,
121
, p.
110286
.10.1016/j.expthermflusci.2020.110286
20.
Wakeling
,
J.
, and
Ellington
,
C. P.
,
1997
, “
Dragonfly Flight. I. Gliding Flight and Steady-State Aerodynamic Forces
,”
J. Exp. Biol.
,
200
(
3
), pp.
543
556
.10.1242/jeb.200.3.543
21.
Chen
,
Y.
, and
Skote
,
M.
,
2016
, “
GlidingPerformance of 3-D Corrugated Dragonfly Wing With Spanwise Variation
,”
J. Fluids Struct.
,
62
, pp.
1
13
.10.1016/j.jfluidstructs.2015.12.012
22.
Rudolph
,
R.
,
1978
, “
Aerodynamic Properties of Libellula quadrimaculata L.(Anisoptera: Libellulidae), and the Flow Around Smooth and Corrugated Wing Section Models During Gliding Flight
,”
Odonatologica
,
7
(
1
), pp.
49
58
.https://natuurtijdschriften.nl/pub/591433
23.
Ennos
,
A. R.
,
1989
, “
The Effect of Size on the Optimal Shapes of Gliding Insects and Seeds
,”
J. Zoology
,
219
(
1
), pp.
61
69
.10.1111/j.1469-7998.1989.tb02565.x
24.
Marxen
,
O.
,
Rist
,
U.
, and
Wagner
,
S.
,
2004
, “
Effect of Spanwise-Modulated Disturbances on Transition in a Separated Boundary Layer
,”
AIAA J.
,
42
(
5
), pp.
937
944
.10.2514/1.565
25.
Siddiqui
,
M. K.
,
Loewen
,
M. R.
,
Richardson
,
C.
,
Asher
,
W. E.
, and
Jessup
,
A. T.
,
2001
, “
Simultaneous Particle Image Velocimetry and Infrared Imagery of Microscale Breaking Waves
,”
Phys. Fluids
,
13
(
7
), pp.
1891
1903
.10.1063/1.1375144
26.
Cowen
,
E. A.
,
Monismith
,
S. G.
,
Cowen
,
E. A.
, and
Monismith
,
S. G.
,
1997
, “
A Hybrid Digital Particle Tracking Velocimetry Technique
,”
Exp. Fluids
,
22
(
3
), pp.
199
211
.10.1007/s003480050038
27.
Polivanov
,
P.
,
2018
, “
Calculating Pressure Fields on the Basis of PIV-Measurements for Supersonic Flows
,”
Thermophys. Aeromechanics
,
25
(
5
), pp.
789
792
.10.1134/S0869864318050153
28.
Van Oudheusden
,
B.
,
2013
, “
PIV-Based Pressure Measurement
,”
Meas. Sci. Technol.
,
24
(
3
), p.
032001
10.1088/0957-0233/24/3/032001
29.
Kim
,
W.-K.
,
Ko
,
J. H.
,
Park
,
H. C.
, and
Byun
,
D.
,
2009
, “
Effects of Corrugation of the Dragonfly Wing on Gliding Performance
,”
J. Theor. Biol.
,
260
(
4
), pp.
523
530
.10.1016/j.jtbi.2009.07.015
30.
Liu
,
H.
, and
Kawachi
,
K.
,
1998
, “
A Numerical Study of Insect Flight
,”
J. Comput. Phys.
,
146
(
1
), pp.
124
156
.10.1006/jcph.1998.6019
31.
Obata
,
A.
, and
Sinohara
,
S.
,
2009
, “
Flow Visualization Study of the Aerodynamics of Modeled Dragonfly Wings
,”
AIAA J.
,
47
(
12
), pp.
3043
3046
.10.2514/1.43836
32.
Obata
,
A.
,
Shinohara
,
S.
,
Akimoto
,
K.
,
Suzuki
,
K.
, and
Seki
,
M.
,
2014
, “
Aerodynamic Bio-Mimetics of Gliding Dragonflies for Ultra-Light Flying Robot
,”
Robotics
,
3
(
2
), pp.
163
180
.10.3390/robotics3020163
33.
Gao
,
H.
,
Hu
,
H.
, and
Wang
,
Z.
,
2008
, “
Computational Study of Unsteady Flows Around Dragonfly and Smooth Airfoils at Low Reynolds Numbers
,”
AIAA
Paper No. 2008-385.10.2514/6.2008-385
34.
Tang
,
H.
,
Lei
,
Y.
,
Li
,
X.
, and
Fu
,
Y.
,
2019
, “
Numerical Investigation of the Aerodynamic Characteristics and Attitude Stability of a Bio-Inspired Corrugated Airfoil for MAV or UAV Applications
,”
Energies
,
12
(
20
), p.
4021
10.3390/en12204021
35.
Rees
,
C. J.
,
1975
, “
Aerodynamic Properties of an Insect Wing Section and a Smooth Aerofoil Compared
,”
Nature
,
258
(
5531
), pp.
141
142
.10.1038/258141a0
36.
Azuma
,
A.
, and
Watanabe
,
T.
,
1988
, “
Flight Performance of a Dragonfly
,”
J. Exp. Biol.
,
137
(
1
), pp.
221
252
.10.1242/jeb.137.1.221
37.
Hord
,
K.
, and
Liang
,
Y.
,
2012
, “
Numerical Investigation of the Aerodynamic and Structural Characteristics of a Corrugated Airfoil
,”
J. Aircr.
,
49
(
3
), pp.
749
757
.10.2514/1.C031135
You do not currently have access to this content.