Abstract

This work deals with the effects of suction and injection on Casson nanofluid around a moving wedge under the influence of gyrotactic micro-organisms along with viscous and ohmic dissipation. The governing system of highly coupled nonlinear partial differential equations together with assisting boundary conditions is converted by applying suitable similarity transformations, into a set of nonlinear ordinary differential equations. The obtained flow model is solved numerically by bvp4c (matlab) procedure. The accuracy of the flow model under consideration is validated by employing another well-known mathematical technique Runge–Kutta-Fehlberg (RKF) having good agreement while comparing the numerical results obtained by bvp4c for both suction and injection cases. Impacts of various pertinent parameters active in the flow model such as thermophoresis and Brownian motion, moving wedge, magnetic field, viscous and ohmic dissipation are numerically calculated for both suction and injection flow situations and also presented graphically. It is observed that the increase in casson parameter enhances the velocity but declines the density of motile organism, concentration and temperature for suction as well as injection flow case. The impacts of mass transfer rate of gyrotactic micro-organisms, Nusselt and Sherwood numbers for various fluid parameters are numerically presented in tabular form, separately for both suction and injection. One of the important observations of this study is that the suction or injection plays a key role in controlling boundary layer flow and brings stability in the flow. Moreover, rate of heat and mass transfer get enhanced in the existence of gyrotactic micro-organisms. Further, it would be worth mentioning that physical behavior of this flow problem coincides very well with already published literature either graphically or in tabular representation.

References

1.
Falkner
,
V. M.
, and
Skan
,
S. W.
,
1931
, “
Some Approximate Solution of the Boundary-Layer Equation
,”
Philos. Mag.
,
12
, pp.
865
896
.10.1080/14786443109461870
2.
Hartree
,
D. R.
,
1937
, “
On an Equation Occurring in Falkner and Skan's Approximate Treatment of the Equations of the Boundary Layer
,”
Mathematical Proceedings of the Cambridge Philosophical Society
, Vol.
33
,
Cambridge University Press
, Cambridge, UK, pp.
223
239
.
3.
Stewartson
,
K.
,
1954
, “
Further Solutions of the Falkner-Skan Equation
,”
Mathematical Proceedings of the Cambridge Philosophical Society
, Vol.
50
,
Cambridge University Press
, Cambridge, UK, pp.
454
465
.
4.
Chen
,
K. K.
, and
Libby
,
P. A.
,
1968
, “
Boundary Layers With Small Departures From the Falkner-Skan Profile
,”
J. Fluid Mech.
,
33
(
02
), pp.
273
282
.10.1017/S0022112068001291
5.
Goyal
,
K. P.
, and
Kassoy
,
D. R.
,
1979
, “
Heat and Mass Transfer in a Saturated Porous Wedge With Impermeable Boundaries
,”
Int. J. Heat Mass Transfer
,
22
(
11
), pp.
1577
1585
.10.1016/0017-9310(79)90137-6
6.
Rajagopal
,
K. R.
,
Gupta
,
A. S.
, and
Na
,
T.-Y.
,
1983
, “
A Note on the Falkner-Skan Flows of a Non-Newtonian Fluid
,”
Int. J. Non-Linear Mech.
,
18
(
4
), pp.
313
320
.10.1016/0020-7462(83)90028-8
7.
Hady
,
F. M.
, and
Hassanien
,
I. A.
,
1985
, “
Effect of a Transverse Magnetic Field and Porosity on the Falkner-Skan Flows of a Non-Newtonian Fluid
,”
Astrophys. Space Sci.
,
112
(
2
), pp.
381
390
.10.1007/BF00653520
8.
Andersson
,
H. I.
,
1988
, “
On Approximate Formulas for Low Prandtl Number Heat Transfer in Laminar Wedge Flows
,”
Int. J. Heat Fluid Flow
,
9
(
2
), pp.
241
243
.10.1016/0142-727X(88)90078-1
9.
Riley
,
N.
, and
Weidman
,
P. D.
,
1989
, “
Multiple Solutions of the Falkner–Skan Equation for Flow Past a Stretching Boundary
,”
SIAM J. Appl. Math.
,
49
(
5
), pp.
1350
1358
.10.1137/0149081
10.
Yih
,
K. A.
,
1999
, “
MHD Forced Convection Flow Adjacent to a Non-Isothermal Wedge
,”
Int. Commun. Heat Mass Transfer
,
26
(
6
), pp.
819
827
.10.1016/S0735-1933(99)00070-6
11.
Selim
,
A.
,
Hossain
,
M. A.
, and
Rees
,
D. A. S.
,
2003
, “
The Effect of Surface Mass Transfer on Mixed Convection Flow Past a Heated Vertical Flat Permeable Plate With Thermophoresis
,”
Int. J. Therm. Sci.
,
42
(
10
), pp.
973
982
.10.1016/S1290-0729(03)00075-9
12.
Kuo
,
B.-L.
,
2003
, “
Application of the Differential Transformation Method to the Solutions of Falkner-Skan Wedge Flow
,”
Acta Mech.
,
164
(
3–4
), pp.
161
174
.10.1007/s00707-003-0019-4
13.
White, F. M., and Majdalani, J., 2006,
Viscous Fluid Flow,
Vol. 3. McGraw-Hill, New York.
14.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
,
2007
, “
Falkner-Skan Equation for Flow Past a Moving Wedge With Suction or Injection
,”
J. Appl. Math. Comput.
,
25
(
1–2
), pp.
67
83
.10.1007/BF02832339
15.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Argonne National Lab
, Lemont,
IL
, Report No. ANL/MSD/CP-84938; CONF-951135-29.
16.
Afzal
,
N.
,
2010
, “
Falkner–Skan Equation for Flow Past a Stretching Surface With Suction or Blowing: Analytical Solutions
,”
Appl. Math. Comput.
,
217
(
6
), pp.
2724
2736
.10.1016/j.amc.2010.07.080
17.
Yacob
,
N. A.
,
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
,
2011
, “
Falkner–Skan Problem for a Static and Moving Wedge With Prescribed Surface Heat Flux in a Nanofluid
,”
Int. Commun. Heat Mass Transfer
,
38
(
2
), pp.
149
153
.10.1016/j.icheatmasstransfer.2010.12.003
18.
Ahmad
,
R.
, and
Khan
,
W. A.
,
2013
, “
Effect of Viscous Dissipation and Internal Heat Generation/Absorption on Heat Transfer Flow Over a Moving Wedge With Convective Boundary Condition
,”
Heat Transfer–Asian Res.
,
42
(
7
), pp.
589
602
.10.1002/htj.21055
19.
Mukhopadhyay
,
S.
, and
Mandal
,
I. C.
,
2014
, “
Boundary Layer Flow and Heat Transfer of a Casson Fluid Past a Symmetric Porous Wedge With Surface Heat Flux
,”
Chin. Phys. B
,
23
(
4
), p.
044702
.10.1088/1674-1056/23/4/044702
20.
Afify
,
A. A.
, and
Bazid
,
M. A. A.
,
2014
, “
MHD Falkner-Skan Flow and Heat Transfer Characteristics of Nanofluids Over a Wedge With Heat Source/Sink Effects
,”
J. Comput. Theor. Nanosci.
,
11
(
8
), pp.
1844
1852
.10.1166/jctn.2014.3578
21.
Turkyilmazoglu
,
M.
,
2015
, “
Slip Flow and Heat Transfer Over a Specific Wedge: An Exactly Solvable Falkner–Skan Equation
,”
J. Eng. Math.
,
92
(
1
), pp.
73
81
.10.1007/s10665-014-9758-6
22.
Khan
,
W. A.
,
Culham
,
R.
, and
Haq
,
R. U.
,
2015
, “
Heat Transfer Analysis of MHD Water Functionalized Carbon Nanotube Flow Over a Static/Moving Wedge
,”
J. Nanomater.
,
2015
, pp.
1
13
.10.1155/2015/934367
23.
Nagendramma
,
V.
,
Sreelakshmi
,
K.
, and
Sarojamma
,
G.
,
2015
, “
MHD Heat and Mass Transfer Flow Over a Stretching Wedge With Convective Boundary Condition and Thermophoresis
,”
Procedia Eng.
,
127
, pp.
963
969
.10.1016/j.proeng.2015.11.444
24.
Mukhopadhyay
,
S.
,
Chandra Mondal
,
I.
, and
Chamkha
,
A. J.
,
2013
, “
Casson Fluid Flow and Heat Transfer Past a Symmetric Wedge
,”
Heat Transfer–Asian Res.
,
42
(
8
), pp.
665
675
.10.1002/htj.21065
25.
El-Dabe
,
N. T.
,
Ghaly
,
A. Y.
,
Rizkallah
,
R. R.
,
Ewis
,
K. M.
, and
Al-Bareda
,
A. S.
,
2015
, “
Numerical Solution of MHD Boundary Layer Flow of Non-Newtonian Casson Fluid on a Moving Wedge With Heat and Mass Transfer and Induced Magnetic Field
,”
J. Appl. Math. Phys.
,
03
(
06
), pp.
649
663
.10.4236/jamp.2015.36078
26.
Raju
,
C. S. K.
, and
Sandeep
,
N.
,
2016
, “
Nonlinear Radiative Magnetohydrodynamic Falkner-Skan Flow of Casson Fluid Over a Wedge
,”
Alexand. Eng. J.
,
55
(
3
), pp.
2045
2054
.10.1016/j.aej.2016.07.006
27.
Ullah
,
I.
,
Shafie
,
S.
, and
Khan
,
I.
,
2017
, “
MHD Heat Transfer Flow of Casson Fluid Past a Stretching Wedge Subject to Suction and Injection
,”
Malaysian J. Fundam. Appl. Sci.
,
13
(
4
), pp.
637
641
.10.11113/mjfas.v13n4.745
28.
Kuznetsov
,
A. V.
, and
Geng
,
P.
,
2005
, “
The Interaction of Bioconvection Caused by Gyrotactic Micro-Organisms and Settling of Small Solid Particles
,”
Int. J. Numer. Methods Heat Fluid Flow
,
15
(
4
), pp.
328
347
.10.1108/09615530510590597
29.
Kuznetsov
,
A. V.
,
2005
, “
The Onset of Bioconvection in a Suspension of Gyrotactic Microorganisms in a Fluid Layer of Finite Depth Heated From Below
,”
Int. Commun. Heat Mass Transfer
,
32
(
5
), pp.
574
582
.10.1016/j.icheatmasstransfer.2004.10.021
30.
Kuznetsov
,
A. V.
,
2005
, “
Investigation of the Onset of Thermo-Bioconvection in a Suspension of Oxytactic Microorganisms in a Shallow Fluid Layer Heated From Below
,”
Theor. Comput. Fluid Dyn.
,
19
(
4
), pp.
287
299
.10.1007/s00162-005-0167-3
31.
Kuznetsov
,
A. V.
,
2006
, “
The Onset of Thermo-Bioconvection in a Shallow Fluid Saturated Porous Layer Heated From Below in a Suspension of Oxytactic Microorganisms
,”
Eur. J. Mech.-B/Fluids
,
25
(
2
), pp.
223
233
.10.1016/j.euromechflu.2005.06.003
32.
Kuznetsov
,
A. V.
,
2010
, “
The Onset of Nanofluid Bioconvection in a Suspension Containing Both Nanoparticles and Gyrotactic Microorganisms
,”
Int. Commun. Heat Mass Transfer
,
37
(
10
), pp.
1421
1425
.10.1016/j.icheatmasstransfer.2010.08.015
33.
Aziz
,
A.
,
Khan
,
W. A.
, and
Pop
,
I.
,
2012
, “
Free Convection Boundary Layer Flow Past a Horizontal Flat Plate Embedded in Porous Medium Filled by Nanofluid Containing Gyrotactic Microorganisms
,”
Int. J. Therm. Sci.
,
56
, pp.
48
57
.10.1016/j.ijthermalsci.2012.01.011
34.
Acharya
,
N.
,
Das
,
K.
, and
Kundu
,
P. K.
,
2016
, “
Framing the Effects of Solar Radiation on Magneto-Hydrodynamics Bioconvection Nanofluid Flow in Presence of Gyrotactic Microorganisms
,”
J. Mol. Liq.
,
222
, pp.
28
37
.10.1016/j.molliq.2016.07.023
35.
M. Mehryan
,
S. A.
,
Kashkooli
,
F. M.
,
Soltani
,
M.
, and
Raahemifar
,
K.
,
2016
, “
Fluid Flow and Heat Transfer Analysis of a Nanofluid Containing Motile Gyrotactic Micro-Organisms Passing a Nonlinear Stretching Vertical Sheet in the Presence of a Non-Uniform Magnetic Field; Numerical Approach
,”
PLoS One
,
11
(
6
), p.
e0157598
.10.1371/journal.pone.0157598
36.
Raju
,
C. S. K.
,
Hoque
,
M. M.
, and
Sivasankar
,
T.
,
2017
, “
Radiative Flow of Casson Fluid Over a Moving Wedge Filled With Gyrotactic Microorganisms
,”
Adv. Powder Technol.
,
28
(
2
), pp.
575
583
.10.1016/j.apt.2016.10.026
37.
Ramzan
,
M.
,
Chung
,
J. D.
, and
Ullah
,
N.
,
2017
, “
Radiative Magnetohydrodynamic Nanofluid Flow Due to Gyrotactic Microorganisms With Chemical Reaction and Non-Linear Thermal Radiation
,”
Int. J. Mech. Sci.
,
130
, pp.
31
40
.10.1016/j.ijmecsci.2017.06.009
38.
Shahid
,
A.
,
Zhou
,
Z.
,
Bhatti
,
M. M.
, and
Tripathi
,
D.
,
2018
, “
Magnetohydrodynamics Nanofluid Flow Containing Gyrotactic Microorganisms Propagating Over a Stretching Surface by Successive Taylor Series Linearization Method
,”
Microgravity Sci. Technol.
,
30
(
4
), pp.
445
455
.10.1007/s12217-018-9600-2
39.
Nayak
,
M. K.
,
Prakash
,
J.
,
Tripathi
,
D.
,
Pandey
,
V. S.
,
Shaw
,
S.
, and
Makinde
,
O. D.
,
2020
, “
3D Bioconvective Multiple Slip Flow of Chemically Reactive Casson Nanofluid With Gyrotactic Micro-Organisms
,”
Heat Transfer–Asian Res.
,
49
(
1
), pp.
135
153
.10.1002/htj.21603
40.
Oyelakin
,
I. S.
,
Mondal
,
S.
, and
Sibanda
,
P.
,
2019
, “
Nonlinear Radiation in Bioconvective Casson Nanofluid Flow
,”
Int. J. Appl. Comput. Math.
,
5
(
5
), pp.
1
20
.10.1007/s40819-019-0705-0
41.
Ramudu
,
A. V.
,
Anantha Kumar
,
K.
,
Sugunamma
,
V.
, and
Sandeep
,
N.
,
2020
, “
Influence of Suction/Injection on MHD Casson Fluid Flow Over a Vertical Stretching Surface
,”
J. Therm. Anal. Calorim.
,
139
(
6
), pp.
3675
3682
.10.1007/s10973-019-08776-7
42.
Majeed
,
A.
,
Zeeshan
,
A.
,
Mahmood
,
T.
,
Rahman
,
S. U.
, and
Khan
,
I.
,
2019
, “
Impact of Magnetic Field and Second-Order Slip Flow of Casson Liquid With Heat Transfer Subject to Suction/Injection and Convective Boundary Condition
,”
J. Magn.
,
24
(
1
), pp.
81
89
.10.4283/JMAG.2019.24.1.081
43.
Al-Khaled
,
K.
,
Khan
,
S. U.
, and
Khan
,
I.
,
2020
, “
Chemically Reactive Bioconvection Flow of Tangent Hyperbolic Nanoliquid With Gyrotactic Microorganisms and Nonlinear Thermal Radiation
,”
Heliyon
,
6
(
1
), p.
e03117
.10.1016/j.heliyon.2019.e03117
44.
Abdelmalek
,
Z.
,
Khan
,
S. U.
,
Waqas
,
H.
,
Al-Khaled
,
K.
, and
Tlili
,
I.
,
2021
, “
A Proposed Unsteady Bioconvection Model for Transient Thin Film Flow of Rate-Type Nanoparticles Configured by Rotating Disk
,”
J. Therm. Anal. Calorim.
,
144
(
5
), pp.
1639
1654
.10.1007/s10973-020-09698-5
45.
Vellanki
,
N.
,
Hemalatha
,
K.
, and
Venkata Ramana Reddy
,
G.
,
2020
, “
Radiation and Chemical Reaction Effects on Mhd Casson Fluid Flow of a Porous Medium With Suction/Injection
,”
Int. J. Mech. Eng. Technol. (IJMET)
,
2
(
11
), pp.
99
116
.10.31224/osf.io/hdr2t
46.
Jabeen
,
K.
,
Mushtaq
,
M.
, and
Akram
,
R. M.
,
2020
, “
Analysis of the MHD Boundary Layer Flow Over a Nonlinear Stretching Sheet in a Porous Medium Using Semianalytical Approaches
,”
Math. Probl. Eng.
,
2020
, pp.
1
9
.10.1155/2020/3012854
47.
Jabeen
,
K.
,
Mushtaq
,
M.
, and
Akram Muntazir
,
R. M.
,
2020
, “
Analysis of MHD Fluids Around a Linearly Stretching Sheet in Porous Media With Thermophoresis, Radiation, and Chemical Reaction
,”
Math. Probl. Eng.
,
2020
, pp.
1
14
.10.1155/2020/9685482
48.
Muntazir
,
R. M.
,
Mushtaq
,
M.
,
Shahzadi
,
S.
, and
Jabeen
,
K.
,
2021
, “
Influence of Chemically Reacting Ferromagnetic Carreau Nanofluid Over a Stretched Sheet With Magnetic Dipole and Viscous Dissipation
,”
Math. Probl. Eng.
,
2021
, pp.
1
12
.10.1155/2021/6652522
49.
Muntazir
,
R. M.
,
Mushtaq
,
M.
, and
Jabeen
,
K.
,
2021
, “
A Numerical Study of MHD Carreau Nanofluid Flow With Gyrotactic Microorganisms Over a Plate, Wedge, and Stagnation Point
,”
Math. Probl. Eng.
,
2021
, pp.
1
22
.10.1155/2021/5520780
50.
Muntazir
,
R. M.
Mushtaq
,
M.
, and
Jabeen
,
K.
,
2021
, “
A Study of MHD Nanofluid Flow Around a Permeable Stretching Sheet With Thermal Radiation and Viscous Dissipation
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
(Accepted).
51.
Kempannagari
,
A. K.
,
Buruju
,
R. R.
,
Naramgari
,
S.
, and
Vangala
,
S.
,
2020
, “
Effect of Joule Heating on MHD non-Newtonian Fluid Flow Past an Exponentially Stretching Curved Surface
,”
Heat Transfer
,
49
(
6
), pp.
3575
3592
.10.1002/htj.21789
52.
Kumar
,
K. A.
,
Ramana Reddy
,
J. V.
,
Sugunamma
,
V.
, and
Sandeep
,
N.
,
2018
, “
Magnetohydrodynamic Cattaneo-Christov Flow Past a Cone and a Wedge With Variable Heat Source/Sink
,”
Alexand. Eng. J.
,
57
(
1
), pp.
435
443
.10.1016/j.aej.2016.11.013
53.
Venkata Ramudu
,
A. C.
,
Anantha Kumar
,
K.
,
Sugunamma
,
V.
, and
Sandeep
,
N.
,
2020
, “
Heat and Mass Transfer in MHD Casson Nanofluid Flow Past a Stretching Sheet With Thermophoresis and Brownian Motion
,”
Heat Transfer
,
49
(
8
), pp.
5020
5037
.10.1002/htj.21865
54.
Tlili
,
I.
,
Mustafa
,
M. T.
,
Kumar
,
K. A.
, and
Sandeep
,
N.
,
2020
, “
Effect of Asymmetrical Heat Rise/Fall on the Film Flow of Magnetohydrodynamic Hybrid Ferrofluid
,”
Sci. Rep.
,
10
(
1
), pp.
1
11
.10.1038/s41598-020-63708-y
55.
Kumar
,
K. A.
,
Sugunamma
,
V.
,
Sandeep
,
N.
, and
Mustafa
,
M. T.
,
2019
, “
Simultaneous Solutions for First Order and Second Order Slips on Micropolar Fluid Flow Across a Convective Surface in the Presence of Lorentz Force and Variable Heat Source/Sink
,”
Sci. Rep.
,
9
(
1
), pp.
1
14
.10.1038/s41598-019-51242-5
56.
Kumar
,
K. A.
,
Sugunamma
,
V.
, and
Sandeep
,
N.
,
2020
, “
Effect of Thermal Radiation on MHD Casson Fluid Flow Over an Exponentially Stretching Curved Sheet
,”
J. Therm. Anal. Calorim.
,
140
(
5
), pp.
2377
2385
.10.1007/s10973-019-08977-0
57.
Ramadevi
,
B.
,
Anantha Kumar
,
K.
,
Sugunamma
,
V.
, and
Sandeep
,
N.
,
2019
, “
Influence of Non-Uniform Heat Source/Sink on the Three-Dimensional Magnetohydrodynamic Carreau Fluid Flow Past a Stretching Surface With Modified Fourier's Law
,”
Pramana
,
93
(
6
), pp.
1
11
.10.1007/s12043-019-1847-7
58.
Kumar
,
K. A.
,
Ramana Reddy
,
J. V.
,
Sugunamma
,
V.
, and
Sandeep
,
N.
,
2019
, “
MHD Carreau Fluid Flow Past a Melting Surface With Cattaneo-Christov Heat Flux
,”
Applied Mathematics and Scientific Computing
,
Birkhäuser, Cham
, pp.
325
336
.
59.
Anantha Kumar
,
K.
,
Sugunamma
,
V.
, and
Sandeep
,
N.
,
2019
, “
Physical Aspects on Unsteady MHD-Free Convective Stagnation Point Flow of Micropolar Fluid Over a Stretching Surface
,”
Heat Transfer–Asian Res.
,
48
(
8
), pp.
3968
3985
.10.1002/htj.21577
60.
Kumar
,
K. A.
,
Sugunamma
,
V.
, and
Sandeep
,
N.
,
2020
, “
Influence of Viscous Dissipation on MHD Flow of Micropolar Fluid Over a Slendering Stretching Surface With Modified Heat Flux Model
,”
J. Therm. Anal. Calorim.
,
139
(
6
), pp.
3661
3674
.10.1007/s10973-019-08694-8
61.
Kumar
,
K. A.
,
Sugunamma
,
V.
, and
Sandeep
,
N.
,
2019
, “
A non-Fourier Heat Flux Model for Magnetohydrodynamic Micropolar Liquid Flow Across a Coagulated Sheet
,”
Heat Transfer–Asian Res.
,
48
(
7
), pp.
2819
2843
.10.1002/htj.21518
62.
Pandey
,
A. K.
, and
Kumar
,
M.
,
2017
, “
Chemical Reaction and Thermal Radiation Effects on a Boundary Layer Flow of Nanofluid Over a Wedge With Viscous and Ohmic Dissipation
,”
St. Petersburg Polytechnical Univ. J.: Phys. and Math.
, 3(4), pp.
322
332
.10.1016/j.spjpm.2017.10.008
You do not currently have access to this content.