Abstract

Near-wall fluid velocimetry in the impingement zone of a microdroplet stream on a flat surface is reported utilizing microparticle tracking velocimetry (μPTV). The results are then compared with the near-wall fluid velocimetry in the impingement region of a steady microjet stream. The presence of tracer particles in the fluid results in a small random movement of the droplets away from the orifice axis, causing a change in the location of the droplet impingement center. A new method to find the center of impingement is described, and an algorithm is developed to obtain the radial velocities in the impingement zone at three out-of-plane heights of 2, 7, and 10 ± 2 μm from the wall. Single-frame double-exposed images of low loading fluorescent tracer particles are used for the experiments. As the impingement frequency of the droplet stream is much higher than the image-capturing rate of the camera, each double-exposed image corresponds to a random instance within the impingement period of the droplets. The presented results show the occurrence of a higher normalized root-mean-square along with positive skewness of the measured radial velocity values for the droplet stream. These indicate higher velocity fluctuations or fluid mixing characteristics induced by the droplet-crown propagation for the droplet stream when compared to that of a jet stream. The near-wall velocity measurements support previously reported observations of the enhanced convection heat transfer characteristics for a droplet stream case.

References

1.
Azar
,
K.
, “
Advanced Cooling Concepts and Their Challenges
,”
Proceedings of International Workshop on Thermal Investigations ICs and Systems (THERMINIC)
, Madrid, Spain, Oct.
1
4
.
2.
Cheng
,
W.-L.
,
Zhang
,
W.-W.
,
Chen
,
H.
, and
Hu
,
L.
,
2016
, “
Spray Cooling and Flash Evaporation Cooling: The Current Development and Application
,”
Renewable Sustainable Energy Rev.
,
55
, pp.
614
628
.10.1016/j.rser.2015.11.014
3.
Oliphant
,
K.
,
Webb
,
B.
, and
McQuay
,
M.
,
1998
, “
An Experimental Comparison of Liquid Jet Array and Spray Impingement Cooling in the Non-Boiling Regime
,”
Exp. Therm. Fluid Sci.
,
18
(
1
), pp.
1
10
.10.1016/S0894-1777(98)10013-4
4.
Jia
,
W.
, and
Qiu
,
H.-H.
,
2003
, “
Experimental Investigation of Droplet Dynamics and Heat Transfer in Spray Cooling
,”
Exp. Therm. Fluid Sci.
,
27
(
7
), pp.
829
838
.10.1016/S0894-1777(03)00015-3
5.
Kim
,
J.
,
2007
, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
753
767
.10.1016/j.ijheatfluidflow.2006.09.003
6.
Zhang
,
T.
,
Muthusamy
,
J.
,
Alvarado
,
J. L.
,
Kanjirakat
,
A.
, and
Sadr
,
R.
,
2016
, “
Numerical and Experimental Investigations of Crown Propagation Dynamics Induced by Droplet Train Impingement
,”
Int. J. Heat Fluid Flow
,
57
, pp.
24
33
.10.1016/j.ijheatfluidflow.2015.10.003
7.
Muthusamy
,
J.
,
Zhang
,
T.
,
Alvarado
,
J.
,
Kanjirakat
,
A.
, and
Sadr
,
R.
,
2016
, “
Effects of High Frequency Droplet Train Impingement on Crown Propagation Dynamics and Heat Transfer
,”
ASME J. Heat Transfer
,
138
(
2
), p.
020903
.10.1115/1.4032231
8.
Qiu
,
L.
,
Dubey
,
S.
,
Choo
,
F. H.
, and
Duan
,
F.
,
2015
, “
Splashing of High Speed Droplet Train Impinging on a Hot Surface
,”
Appl. Phys. Lett.
,
107
(
16
), p.
164102
.10.1063/1.4934531
9.
Zhang
,
T.
,
Alvarado
,
J. L.
,
Muthusamy
,
J.
,
Kanjirakat
,
A.
, and
Sadr
,
R.
,
2017
, “
Heat Transfer Characteristics of Double, Triple and Hexagonally-Arranged Droplet Train Impingement Arrays
,”
Int. J. Heat Mass Transfer
,
110
, pp.
562
575
.10.1016/j.ijheatmasstransfer.2017.03.009
10.
Trujillo
,
M. F.
,
Alvarado
,
J.
,
Gehring
,
E.
, and
Soriano
,
G. S.
,
2011
, “
Numerical Simulations and Experimental Characterization of Heat Transfer From a Periodic Impingement of Droplets
,”
ASME J. Heat Transfer
,
133
(
12
), p.
122201
.10.1115/1.4004348
11.
Haq
,
S.
,
Muthusamy
,
J. P.
,
Zhang
,
T.
, and
Alvarado
,
J. L.
, “
Effectiveness of Micro-Droplet Train and Micro-Jet Impingement in Surface Cooling
,”
Fourth Thermal and Fluids Engineering Conference
, Las Vegas, NV, Apr. 14–17, pp. 1379-1382.10.1615/TFEC2019.mph.028103
12.
Soriano
,
G. E.
,
Zhang
,
T.
, and
Alvarado
,
J. L.
,
2014
, “
Study of the Effects of Single and Multiple Periodic Droplet Impingements on Liquid Film Heat Transfer
,”
Int. J. Heat Mass Transfer
,
77
, pp.
449
463
.10.1016/j.ijheatmasstransfer.2014.04.075
13.
Lewis
,
S.
,
Anumolu
,
L.
, and
Trujillo
,
M.
,
2013
, “
Numerical Simulations of Droplet Train and Free Surface Jet Impingement
,”
Int. J. Heat Fluid Flow
,
44
, pp.
610
623
.10.1016/j.ijheatfluidflow.2013.09.001
14.
Erkan
,
N.
, and
Okamoto
,
K.
,
2014
, “
Full-Field Spreading Velocity Measurement Inside Droplets Impinging on a Dry Solid Surface
,”
Exp. Fluids
,
55
(
11
), p.
1845
.10.1007/s00348-014-1845-y
15.
Smith
,
M.
, and
Bertola
,
V.
,
2011
, “
Particle Velocimetry Inside Newtonian and non-Newtonian Droplets Impacting a Hydrophobic Surface
,”
Exp. Fluids
,
50
(
5
), pp.
1385
1391
.10.1007/s00348-010-0998-6
16.
Bordoloi
,
A. D.
, and
Longmire
,
E. K.
, “
Simultaneous PIV and Interface Tracking Applied to Drops Impacting and Moving Through a Confining Orifice
,”
Proceedings of 17th International Symposium on Application of Laser Technology to Fluid Mechanics
, Lisbon, Portogual, July 7–10, pp.
7
10
. http://ltces.dem.ist.utl.pt/LXLASER/lxlaser2014/finalworks2014/abstracts/03.16_3.pdf
17.
Nishino
,
K.
,
Samada
,
M.
,
Kasuya
,
K.
, and
Torii
,
K.
,
1996
, “
Turbulence Statistics in the Stagnation Region of an Axisymmetric Impinging Jet Flow
,”
Int. J. Heat Fluid Flow
,
17
(
3
), pp.
193
201
.10.1016/0142-727X(96)00040-9
18.
Guo
,
T.
,
Rau
,
M. J.
,
Vlachos
,
P. P.
, and
Garimella
,
S. V.
,
2017
, “
Axisymmetric Wall Jet Development in Confined Jet Impingement
,”
Phys. Fluids
,
29
(
2
), p.
025102
.10.1063/1.4975394
19.
Zhang
,
J.
,
Liu
,
Y.
,
Qi
,
G.
,
Jiao
,
W.
, and
Yuan
,
Z.
,
2016
, “
Flow Characteristics in Free Impinging Jet Reactor by Particle Image Velocimetry (PIV) Investigation
,”
Fluid Dyn. Res.
,
48
(
4
), p.
045505
.10.1088/0169-5983/48/4/045505
20.
Tummers
,
M. J.
,
Jacobse
,
J.
, and
Voorbrood
,
S. G.
,
2011
, “
Turbulent Flow in the Near Field of a Round Impinging Jet
,”
Int. J. Heat Mass Transfer
,
54
(
23–24
), pp.
4939
4948
.10.1016/j.ijheatmasstransfer.2011.07.007
21.
Angioletti
,
M.
,
Di Tommaso
,
R.
,
Nino
,
E.
, and
Ruocco
,
G.
,
2003
, “
Simultaneous Visualization of Flow Field and Evaluation of Local Heat Transfer by Transitional Impinging Jets
,”
Int. J. Heat Mass Transfer
,
46
(
10
), pp.
1703
1713
.10.1016/S0017-9310(02)00479-9
22.
Chaugule
,
V.
,
Narayanaswamy
,
R.
,
Lucey
,
A. D.
,
Narayanan
,
V.
, and
Jewkes
,
J.
,
2018
, “
Particle Image Velocimetry and Infrared Thermography of Turbulent Jet Impingement on an Oscillating Surface
,”
Exp. Therm. Fluid Sci.
,
98
, pp.
576
593
.10.1016/j.expthermflusci.2018.06.006
23.
Erkan
,
N.
,
2019
, “
Full-Field Spreading Velocity Measurement Inside Droplets Impinging on a Dry Solid-Heated Surface
,”
Exp. Fluids
,
60
(
5
), p.
88
.10.1007/s00348-019-2735-0
24.
Frommhold
,
P. E.
,
Mettin
,
R.
, and
Ohl
,
C.-D.
,
2015
, “
Height-Resolved Velocity Measurement of the Boundary Flow During Liquid Impact on Dry and Wetted Solid Substrates
,”
Exp. Fluids
,
56
(
4
), p.
76
.10.1007/s00348-015-1944-4
25.
Yu
,
C.-H.
, and
Kim
,
H.-B.
,
2007
, “
Stereoscopic micro-PIV Measurements of Jet Flow
,”
J. Korean Soc. Visualization
,
5
(
1
), pp.
43
48
.10.5407/JKSV.2007.5.1.043
26.
Lebeau
,
F.
,
Vetrano
,
M.-R.
,
van Beeck
,
J.
, and
Riethmuller
,
M.
,
2009
, “
Droplet Internal Flow Measurement Using micro-PIV
,”
International Workshop Bubble and Drop Interfaces
, Thessaloniki, Greece, Sept. 23–25, Poster presentation-Cost P21 Action “Physics of Droplets”.https://orbi.uliege.be/bitstream/2268/73699/1/Poster%20B%26D2009%20Lebeau.pdf
27.
Wei
,
Y.
,
Li
,
T.
,
Zhou
,
X.
, and
Zhang
,
Z.
,
2020
, “
Time-Resolved Measurement of the Near-Nozzle Air Entrainment of High-Pressure Diesel Spray by High-Speed micro-PTV Technique
,”
Fuel
,
268
, p.
117343
.10.1016/j.fuel.2020.117343
28.
Kim
,
J.-T.
,
Kim
,
D.
,
Liberzon
,
A.
, and
Chamorro
,
L. P.
,
2016
, “
Three-Dimensional Particle Tracking Velocimetry for Turbulence Applications: Case of a Jet Flow
,”
J. Visualized Exp.
,
108
, p.
e53745
.10.3791/53745
29.
Hamdi
,
J.
,
Abed-Meraïm
,
K.
,
Assoum
,
H.
,
Sakout
,
A.
,
Al-Kheir
,
M.
,
Mrach
,
T.
,
Rambault
,
L.
,
Cauet
,
S.
, and
Etien
,
E.
,
2019
, “
Tomographic and Time-Resolved PIV Measurement of an Impinging Jet on a Slotted Plate
,”
Proceedings of MATEC Web of Conferences
Volume 261, 2019 (5ième Congrès International Francophone de Mécanique Avancée (CIFMA 2018)), p.
03004
.10.1051/matecconf/201926103004
30.
Wang
,
Z.
,
Zhang
,
J.
,
Shirazi
,
S. A.
, and
Dou
,
Y.
,
2019
, “
Predicting Erosion in a non-Newtonian Shear-Thinning Jet Flow With Validated CFD Models From PIV and PTV Measurements
,”
Wear
,
426–427
, pp.
501
506
.10.1016/j.wear.2018.12.027
31.
Ninomiya
,
N.
, and
Iwamoto
,
K.
, 2012, “
PIV Measurement of a Droplet Impact on a Thin Fluid Layer
,”
AIP Conference Proceedings
,
American Institute of Physics
,
1428
(
11
), pp.
11
17
.10.1063/1.3694683
32.
Richter
,
B.
,
Dullenkopf
,
K.
, and
Bauer
,
H.-J.
,
2005
, “
Investigation of Secondary Droplet Characteristics Produced by an Isooctane Drop Chain Impact Onto a Heated Piston Surface
,”
Exp. Fluids
,
39
(
2
), pp.
351
363
.10.1007/s00348-005-1018-0
33.
Lad
,
N.
,
Aroussi
,
A.
, and
Adebayo
,
D.
,
2011
, “
Measurement of Near Wall Fluid Interaction With an Atomised Spray
,”
JApSc
,
11
(
10
), pp.
1851
1856
. 10.3923/jas.2011.1851.1856
34.
Sadr
,
R.
, and
Klewicki
,
J.
,
2003
, “
A Spline-Based Technique for Estimating Flow Velocities Using Two-Camera Multi-Line MTV
,”
Exp. Fluids
,
35
(
3
), pp.
257
261
.10.1007/s00348-003-0651-8
35.
Sadr
,
R.
,
Anoop
,
K.
, and
Khader
,
R.
,
2012
, “
Effects of Surface Forces and Non-Uniform Out-of-Plane Illumination on the Accuracy of nPIV Velocimetry
,”
Meas. Sci. Technol.
,
23
(
5
), p.
055303
.10.1088/0957-0233/23/5/055303
36.
Melling
,
A.
,
1997
, “
Tracer Particles and Seeding for Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
8
(
12
), pp.
1406
1416
.10.1088/0957-0233/8/12/005
37.
Olsen
,
M.
, and
Adrian
,
R.
,
2000
, “
Out-of-Focus Effects on Particle Image Visibility and Correlation in Microscopic Particle Image Velocimetry
,”
Exp. Fluids
,
29
(
7
), pp.
S166
S174
.10.1007/s003480070018
38.
Khayat
,
R. E.
,
2016
, “
Impinging Planar Jet Flow on a Horizontal Surface With Slip
,”
J. Fluid Mech.
,
808
, pp.
258
289
.10.1017/jfm.2016.620
39.
Didden
,
N.
, and
Ho
,
C.-M.
,
1985
, “
Unsteady Separation in a Boundary Layer Produced by an Impinging Jet
,”
J. Fluid Mech.
,
160
, pp.
235
256
.10.1017/S0022112085003469
40.
Landreth
,
C. C.
, and
Adrian
,
R. J.
,
1990
, “
Impingement of a Low Reynolds Number Turbulent Circular Jet Onto a Flat Plate at Normal Incidence
,”
Exp. Fluids
,
9
(
1–2
), pp.
74
84
.10.1007/BF00575338
41.
Duda
,
J. C.
,
Lagor
,
F. D.
, and
Fleischer
,
A. S.
,
2008
, “
A Flow Visualization Study of the Development of Vortex Structures in a Round Jet Impinging on a Flat Plate and a Cylindrical Pedestal
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1754
1758
.10.1016/j.expthermflusci.2008.05.001
42.
van Hout
,
R.
,
Rinsky
,
V.
, and
Grobman
,
Y.
,
2018
, “
Experimental Study of a Round Jet Impinging on a Flat Surface: Flow Field and Vortex Characteristics in the Wall Jet
,”
Int. J. Heat Fluid Flow
,
70
, pp.
41
58
.10.1016/j.ijheatfluidflow.2018.01.010
43.
El Hassan
,
M.
,
Assoum
,
H.
,
Martinuzzi
,
R.
,
Sobolik
,
V.
,
Abed-Meraim
,
K.
, and
Sakout
,
A.
,
2013
, “
Experimental Investigation of the Wall Shear Stress in a Circular Impinging Jet
,”
Phys. Fluids
,
25
(
7
), p.
077101
.10.1063/1.4811172
44.
Muthusamy
,
J. P.
,
2018
, “
Numerical Investigation of Thermo-Hydrodynamics of Multiple Droplet Train Impingement for Surface Cooling
,” Doctoral dissertation,
Texas A & M University
, College Station, TX.
45.
Benedict
,
L.
, and
Gould
,
R.
,
1996
, “
Towards Better Uncertainty Estimates for Turbulence Statistics
,”
Exp. Fluids
,
22
(
2
), pp.
129
136
.10.1007/s003480050030
46.
DeCarlo
,
L. T.
,
1997
, “
On the Meaning and Use of Kurtosis
,”
Psychol. Methods
,
2
(
3
), pp.
292
307
.10.1037/1082-989X.2.3.292
47.
Ito
,
Y.
, and
Komori
,
S.
,
2006
, “
A Vibration Technique for Promoting Liquid Mixing and Reaction in a Microchannel
,”
AIChE J.
,
52
(
9
), pp.
3011
3017
.10.1002/aic.10919
You do not currently have access to this content.