Previous work has shown that the employment of a gap drainage impeller in a centrifugal pump can improve the pump's hydraulic performance and cavitation resistance. However, during experiments, an unconventional cavitation phenomenon has been observed in the form of a staggered pair of fixed impeller flow tunnels. For the purpose of understanding the factors involved with this unconventional phenomenon, the present study analyzes the cavitation formation and evolution processes using numerical and experimental methods. A scalable detached eddy simulation (SDES) method was employed to address unsteady turbulent flow. First, the method was validated by comparing the performance data and liquid water velocity distributions obtained by calculation and experiment in the absence of cavitation. Then, numerical simulations of the cavitation flow field were conducted under a flow discharge condition one-half that of the optimum value. Within a particular range of cavitation numbers, the calculated results are found to reproduce the unconventional cavitation phenomenon observed in the experiments. The formation mechanism involves a combination of many factors such as impeller geometry, inflow discharge condition, and cavitation number. As for a certain geometry, the formation and evolution processes can generally be analyzed and explained according to the influence of the attack angle, which is affected by variations in the allocated flow discharge and cavitation volume in each impeller tunnel. The jet flow through the gap between the main and vice blades also contributes to the formation of this phenomenon.

References

1.
Brennen
,
C. E.
,
2013
, “
A Review of the Dynamics of Cavitating Pumps
,”
ASME J. Fluids Eng.
,
135
(
6
), p.
061301
.
2.
Hatano
,
S.
,
Kang
,
D.
,
Kagawa
,
S.
,
Nohmi
,
M.
, and
Yokota
,
K.
,
2014
, “
Study of Cavitation Instabilities in Double-Suction Centrifugal Pump
,”
Int. J. Fluid Mach. Syst.
,
7
(
3
), pp.
94
100
.
3.
Dular
,
M.
, and
Petkovšek
,
M.
,
2015
, “
On the Mechanisms of Cavitation Erosion-Coupling High Speed Videos to Damage Patterns
,”
Exp. Therm. Fluid Sci.
,
68
(
6
), pp.
359
370
.
4.
Li
,
X.
,
Li
,
J. W.
,
Wang
,
J.
, and
Cai
,
G. B.
,
2015
, “
Study on Cavitation Instabilities in a Three-Bladed Inducer
,”
J. Propul. Power
,
31
(
4
), pp.
1051
1056
.
5.
Kang
,
D.
,
Watanabe
,
T.
,
Yonezawa
,
K.
,
Horiguchi
,
H.
,
Kawata
,
Y.
, and
Tsujimoto
,
Y.
,
2009
, “
Inducer Design to Avoid Cavitation Instabilities
,”
Int. J. Fluid Mach. Syst.
,
2
(
12
), pp.
439
448
.
6.
Kurokawa
,
J.
,
2011
, “
J-Groove Technique for Suppressing Various Anomalous Flow Phenomena in Turbomachines
,”
Int. J. Fluid Mach. Syst.
,
4
(
1
), pp.
1
13
.
7.
Lu
,
X. X.
,
Wang
,
D. M.
,
Shen
,
W.
,
Zhu
,
C. B.
, and
Chen
,
M. J.
,
2015
, “
Experimental Investigation on the Performance of Improving Jet Pump Cavitation With Air Suction
,”
Int. J. Heat Mass Transfer
,
88
(
7
), pp.
379
387
.
8.
Kim
,
J. H.
,
Ishzaka
,
K.
,
Watanabe
,
S.
, and
Furukawa
,
A.
,
2010
, “
Cavitation Surge Suppression of Pump Inducer With Axi-Asymmetrical Inlet Plate
,”
Int. J. Fluid Mach. Syst.
,
3
(
1
), pp.
50
57
.
9.
Chen
,
H. X.
,
Liu
,
W. W.
, and
Jian
,
W.
,
2011
, “
Development of Low Specific-Speed Centrifugal Pump Impellers Based on Flow Control Technique
,”
J. Drain. Irrig. Mach. Eng.
,
29
(
6
), pp.
466
470
.
10.
Zhu
,
B.
, and
Chen
,
H. X.
,
2012
, “
Cavitating Suppression of Low Specific Speed Centrifugal Pump With Gap Drainage Blades
,”
J. Hydrodyn.
,
24
(
5
), pp.
729
736
.
11.
Zhu
,
B.
,
Chen
,
H. X.
, and
Wei
,
Q.
,
2014
, “
Numerical and Experimental Investigation of Cavitating Characteristics in Centrifugal Pump With Gap Impeller
,”
Int. J. Turbo Jet-Engines
,
31
(
1
), pp.
1
10
.
12.
Pennings
,
P. C.
,
Bosschers
,
J.
,
Westerweel
,
J.
, and
Van Terwisga
,
T. J. C.
,
2015
, “
Dynamics of Isolated Vortex Cavitation
,”
J. Fluid Mech.
,
778
(
9
), pp.
288
313
.
13.
Kiyama
,
A.
,
Tagawa
,
Y.
,
Ando
,
K.
, and
Kameda
,
M.
,
2016
, “
Effects of a Water Hammer and Cavitation on Jet Formation in a Test Tube
,”
J. Fluid Mech.
,
787
(
1
), pp.
224
236
.
14.
Tani
,
N.
,
Yamanishi
,
N.
, and
Tsujimoto
,
Y.
,
2012
, “
Influence of Flow Coefficient and Flow Structure on Rotational Cavitation in Inducer
,”
ASME J. Fluids Eng.
,
134
(
2
), pp.
130
130
.
15.
Horiguchi
,
H.
,
Watanabe
,
S.
, and
Tsujimoto
,
Y.
,
2000
, “
A Theoretical Analysis of Alternate Blade Cavitation in Inducers
,”
ASME J. Fluids Eng.
,
122
(
3
), pp.
156
163
.
16.
Kang
,
D.
,
Yonezawa
,
K.
,
Horiguchi
,
H.
,
Kawata
,
Y.
, and
Tsujimoto
,
Y.
,
2009
, “
Cause of Cavitation Instabilities in Three Dimensional Inducer
,”
Int. J. Fluid Mach. Syst.
,
2
(
3
), pp.
206
214
.
17.
Jens
,
F.
, and
Gunter
,
K.
,
2002
, “
Rotating Cavitation in a Centrifugal Pump Impeller of Low Specific Speed
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
356
362
.
18.
Coutier-Delgosha
,
O.
,
2007
, “
Numerical Prediction of Cavitation Flow on a Two-Dimensional Symmetrical Hydrofoil and Comparison to Experiment
,”
ASME J. Fluids Eng.
,
129
(
3
), pp.
279
291
.
19.
Duplaa
,
S.
,
Coutier-Delgosha
,
O.
, and
Dazin
,
A.
,
2010
, “
Experimental Study of a Cavitating Centrifugal Pump During Fast Startups
,”
ASME J. Fluids Eng.
,
132
(
2
), p.
021301
.
20.
Huang
,
B.
,
Zhao
,
Y.
, and
Wang
,
G.
,
2014
, “
Large Eddy Simulation of Turbulent Vortex-Cavitation Interactions in Transient Sheet/Cloud Cavitating Flows
,”
Comput. Fluids
,
92
(
3
), pp.
113
124
.
21.
Kim
,
J.
, and
Lee
,
J. S.
,
2015
, “
Numerical Study of Cloud Cavitation Effects on Hydrophobic Hydrofoils
,”
Int. J. Heat Mass Transfer
,
83
(
4
), pp.
591
603
.
22.
Zhang
,
D. S.
,
Shi
,
W. D.
,
Pan
,
D. Z.
, and
Dubuisson
,
M.
,
2015
, “
Numerical and Experimental Investigation of Tip Leakage Vortex Cavitation Patterns and Mechanisms in an Axial Flow Pump
,”
ASME J. Fluids Eng.
,
137
(
12
), p.
121103
.
23.
Gavaises
,
M.
,
Villa
,
F.
,
Koukouvinis
,
P.
,
Marengo
,
M.
, and
Franc
,
J. P.
,
2015
, “
Visualisation and Les Simulation of Cavitation Cloud Formation and Collapse in an Axisymmetric Geometry
,”
Int. J. Multiphase Flow
,
68
(s
3–4
), pp.
14
26
.
24.
Zhang
,
X. B.
,
Zhu
,
J. K.
,
Qiu
,
L. M.
, and
Zhang
,
X. J.
,
2015
, “
Calculation and Verification of Dynamical Cavitation Model for Quasi-Steady Cavitating Flow
,”
Int. J. Heat Mass Transfer
,
86
(
7
), pp.
294
301
.
25.
Dular
,
M.
,
Bachert
,
R.
,
Stoffel
,
B.
, and
Širok
,
B.
,
2005
, “
Experimental Evaluation of Numerical Simulation of Cavitating Flow Around Hydrofoil
,”
Eur. J. Mech. B/Fluids
,
24
(
4
), pp.
522
538
.
26.
Dular
,
M.
,
Bachert
,
R.
,
Schaad
,
C.
, and
Stoffel
,
B.
,
2007
, “
Investigation of a Re-Entrant Jet Reflection at an Inclined Cavity Closure Line
,”
Eur. J. Mech. B/Fluids
,
26
(
5
), pp.
688
705
.
27.
Bachert
,
R.
,
Stoffel
,
B.
, and
Dular
,
M.
,
2010
, “
Unsteady Cavitation at the Tongue of the Volute of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061301
.
28.
Park
,
S.
, and
Rhee
,
S. H.
,
2015
, “
Comparative Study of Incompressible and Isothermal Compressible Flow Solvers for Cavitating Flow Dynamics
,”
J. Mech. Sci. Technol.
,
29
(
8
), pp.
3287
3296
.
29.
Wang
,
J.
,
Petkovsek
,
M.
,
Liu
,
H.
,
Širok
,
B.
, and
Dular
,
M.
,
2015
, “
Combined Numerical and Experimental Investigation of the Cavitation Erosion Process
,”
ASME J. Fluids Eng.
,
137
(
5
), pp.
451
454
.
30.
Peng
,
G.
,
Okada
,
K.
,
Yang
,
C.
,
Oguma
,
Y.
, and
Shimizu
,
S.
,
2016
, “
Numerical Simulation of Unsteady Cavitation in a High-Speed Water Jet
,”
Int. J. Fluid Mach. Syst.
,
9
(
1
), pp.
66
74
.
31.
Coutier-Delgosha
,
O.
,
Stutz
,
B.
,
Vabre
,
A.
, and
Legoupil
,
S.
,
2007
, “
Analysis of Cavitating Flow Structure by Experimental and Numerical Investigations
,”
J. Fluid Mech.
,
578
(
5
), pp.
171
222
.
32.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
T.
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,”
Fifth International Conference on Multiphase Flow
, Yokohama, Japan, Paper No.152.
33.
Franc
,
J. P.
,
2007
,
The Rayleigh–Plesset Equation: A Simple and Powerful Tool to Understand Various Aspects of Cavitation
,
Springer
,
Vienna, Austria
.
34.
Spalart
,
P. R.
,
2009
, “
Detached Eddy Simulation of Massively Separated Flows
,”
AIAA
Paper No. 0879.
35.
Strelets
,
M.
,
2001
, “
Detached Eddy Simulation of Massively Separated Flows
,”
AIAA
Paper No. 0879.
36.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions—Part1: Theory and Model Description
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
113
138
.
37.
Davidson
,
L.
,
2006
, “
Evaluation of the SST-SAS Model: Channel Flow, Asymmetric Diffuser and Axial-Symmetric Hill
,”
ECCOMAS
CFD
, Delft, The Netherlands, pp.
1
20
.
38.
Kato
,
M.
, and
Launder
,
B. E.
,
1993
, “
The Modelling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
Ninth Symposium on Turbulent Shear Flows Kyoto
, Japan, Paper No.10-4.
39.
Celik
,
B. I.
,
Ghia
,
U.
, and
Roache
,
P. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
You do not currently have access to this content.