The migration of a bubble inside a two-dimensional converging–diverging channel is investigated numerically. A parametric study is conducted to investigate the effects of the Reynolds and Weber numbers and the amplitude of the converging–diverging channel. It is found that increasing the Reynolds number and the amplitude of the channel increases the oscillation of the bubble and promotes the migration of the bubble toward one of the channel wall. The bubble undergoes oblate–prolate deformation periodically at the early times, which becomes chaotic at the later times. This phenomenon is a culmination of the bubble path instability as well as the Segré–Silberberg effect.
Issue Section:
Technical Brief
References
1.
Haeberle
, S.
, and Zengerle
, R.
, 2007
, “Microfluidic Platforms for Lab-on-a-Chip Applications
,” Lab Chip
, 7
(9
), pp. 1094
–1110
.2.
Stone
, H. A.
, Stroock
, A. D.
, and Ajdari
, A.
, 2004
, “Engineering Flows in Small Devices: Microfluidics Towards a Lab-on-a-Chip
,” Annu. Rev. Fluid Mech.
, 36
, pp. 318
–411
.3.
Le
, T.-L.
, Chen
, J.-C.
, Shen
, B.-C.
, Hwub
, F.-S.
, and Nguyen
, H.-B.
, 2015
, “Numerical Investigation of the Thermocapillary Actuation Behavior of a Droplet in a Microchannel
,” Int. J. Heat Mass Transfer
, 83
, pp. 721
–730
.4.
Tripathi
, M. K.
, Sahu
, K. C.
, Karapetsas
, G.
, Sefiane
, K.
, and Matar
, O. K.
, 2015
, “Non-Isothermal Bubble Rise: Non-Monotonic Dependence of Surface Tension on Temperature
,” J. Fluid Mech.
, 763
, pp. 82
–108
.5.
Tripathi
, M. K.
, Sahu
, K. C.
, and Govindarajan
, R.
, 2014
, “Why a Falling Drop Does Not in General Behave Like a Rising Bubble
,” Nat. Sci. Rep.
, 4
, p. 4771
.6.
Tripathi
, M. K.
, Sahu
, K. C.
, and Govindarajan
, R.
, 2015
, “Dynamics of an Initially Spherical Bubble Rising in Quiescent Liquid
,” Nat. Commun.
, 6
, p. 6268
.7.
Sahu
, K. C.
, and Govindarajan
, R.
, 2005
, “Stability of Flow Through a Slowly Diverging Pipe
,” J. Fluid Mech.
, 531
, pp. 325
–334
.8.
Jose
, B. M.
, and Cubaud
, T.
, 2012
, “Droplet Arrangement and Coalescence in Diverging/Converging Microchannels
,” Microfluid. Nanofluid.
, 12
(5
), pp. 687
–696
.9.
Blancher
, S.
, and Creff
, R.
, 2004
, “Analysis of Convective Hydrodynamics Instabilities in a Symmetric Wavy Channel
,” Phys. Fluids
, 16
(10
), pp. 3726
–3737
.10.
Selvarajan
, S.
, Tulapurkara
, E. G.
, and Ram
, V. V.
, 1999
, “Stability Characteristics of Wavy Walled Channel Flows
,” Phys. Fluids
, 11
(3
), pp. 579
–589
.11.
Szumbarski
, J.
, and Floryan
, J. M.
, 2006
, “Transient Disturbance Growth in a Corrugated Channel
,” J. Fluid Mech.
, 568
, pp. 243
–272
.12.
Duryodhan
, V.
, Singh
, S. G.
, and Agarwal
, A.
, 2013
, “Liquid Flow Through a Diverging Microchannel
,” Microfluid. Nanofluid.
, 14
, pp. 53
–67
.13.
Jotkar
, M. R.
, Swaminathan
, G.
, Sahu
, K. C.
, and Govindarajan
, R.
, 2016
, “Global Linear Instability of Flow Through a Converging-Diverging Channel
,” ASME J. Fluids Eng.
, 138
(3
), p. 031301
.14.
Santacesaria
, E.
, Di Serio
, M.
, Tesser
, R.
, Casale
, L.
, Verde
, D.
, Turco
, R.
, and Bertola
, A.
, 2009
, “Use of a Corrugated Plates Heat Exchanger Reactor for Obtaining Biodiesel With Very High Productivity
,” Energy Fuels
, 23
(10
), pp. 5206
–5212
.15.
Théron
, F.
, Anxionnaz-Minvielle
, Z.
, Cabassud
, M.
, Gourdon
, C.
, and Tochon
, P.
, 2014
, “Characterization of the Performances of an Innovative Heat-Exchanger/Reactor
,” Chem. Eng. Process.
, 82
, pp. 30
–41
.16.
Stone
, K.
, and Vanka
, S.
, 1999
, “Numerical Study of Developing Flow and Heat Transfer in a Wavy Passage
,” ASME J. Fluids Eng.
, 121
(4
), pp. 713
–720
.17.
Gradeck
, M.
, and Lebouche
, M.
, 2000
, “Two-Phase Gas-Liquid Flow in Horizontal Corrugated Channels
,” Int. J. Multiphase Flow
, 26
(3
), pp. 435
–443
.18.
Vlasogiannis
, P.
, Karagiannis
, G.
, Argyropoulos
, P.
, and Bontozoglou
, V.
, 2002
, “Air–Water Two-Phase Flow and Heat Transfer in a Plate Heat Exchanger
,” Int. J. Multiphase Flow
, 28
(5
), pp. 757
–772
.19.
Nilpueng
, K.
, and Wongwises
, S.
, 2006
, “Flow Pattern and Pressure Drop of Vertical Upward Gas–Liquid Flow in Sinusoidal Wavy Channels
,” Exp. Therm. Fluid Sci.
, 30
, pp. 513
–534
.20.
Andreussi
, P.
, Paglianti
, A.
, and Silva
, F. S.
, 1999
, “Dispersed Bubble Flow in Horizontal Pipes
,” Chem. Eng. Sci.
, 54
(8
), pp. 1101
–1107
.21.
Murai
, Y.
, Fukuda
, H.
, Oishi
, Y.
, Kodamai
, Y.
, and Yamamoto
, F.
, 2007
, “Skin Friction Reduction by Large Air Bubbles in a Horizontal Channel Flow
,” Int. J. Multiphase Flow
, 33
(2
), pp. 147
–163
.22.
Böhm
, L.
, Kurita
, T.
, Kimura
, K.
, and Kraume
, M.
, 2014
, “Rising Behaviour of Single Bubbles in Narrow Rectangular Channels in Newtonian and Non-Newtonian Liquids
,” Int. J. Multiphase Flow
, 65
, pp. 11
–23
.23.
Segré
, G.
, and Silberberg
, A.
, 1961
, “Radial Particle Displacements in Poiseuille Flow of Suspensions
,” Nature
, 189
(4760
), pp. 209
–210
.24.
Douglas-Hamilton
, D. H.
, Smith
, N. G.
, Kuster
, C. E.
, Vermeiden
, J. P. W.
, and Althouse
, G. C.
, 2005
, “Capillary-Loaded Particle Fluid Dynamics: Effect on Estimation of Sperm Concentration
,” J. Androl.
, 26
, pp. 115
–122
.25.
Pan
, T.-W.
, and Glowinski
, R.
, 2002
, “Direct Simulation of the Motion of Neutrally Buoyant Circular Cylinders in Plane Poiseuille Flow
,” J. Comput. Phys.
, 181
(1
), pp. 260
–279
.26.
Matas
, J.-P.
, Morris
, J. F.
, and Guazzelli
, E.
, 2009
, “Lateral Force on a Rigid Sphere in Large-Inertia Laminar Pipe Flow
,” J. Fluid Mech.
, 621
, pp. 59
–67
.27.
Brackbill
, J.
, Kothe
, D. B.
, and Zemach
, C.
, 1992
, “A Continuum Method for Modeling Surface Tension
,” J. Comput. Phys.
, 100
(2
), pp. 335
–354
.28.
Popinet
, S.
, 2003
, “Gerris: A Tree-Based Adaptive Solver for the Incompressible Euler Equations in Complex Geometries
,” J. Comput. Phys.
, 190
(2
), pp. 572
–600
.Copyright © 2016 by ASME
You do not currently have access to this content.