The use of supercritical carbon dioxide (SC-CO2) as a working fluid in energy conversion systems has many benefits, including high efficiency, compact turbomachinery, and the abundance of CO2. A very important issue for design optimization and performance analysis of future SC Brayton cycles is concerned with the SC-CO2 flow inside high-speed compressors and turbines. The objective of this paper is to present a novel modeling approach to, and its use in numerical simulations of, SC-CO2 flow inside a high-speed compact compressor. The proposed approach capitalizes on using three different physical and mathematical formulations of one-dimensional (1D) models, i.e., compressible and incompressible flow models using actual properties of SC-CO2 and a compressible ideal gas model, as a reference to verify the predictive capabilities of a three-dimensional (3D) incompressible flow model. The incompressible model has been used to perform simulations for a complete detailed multidimensional model of an SC-CO2 high-speed compact compressor. The advantages of the new model include numerical stability, computational efficiency, and physical accuracy. In particular, it has been shown that the model's predictions are consistent with selected published technical data.

References

1.
Brown
,
D. W.
,
2000
, “
A Hot Dry Rock Geothermal Energy Concept Utilizing Supercritical CO2 Instead of Water
,”
25th Workshop on Geothermal Reservoir Engineering
,
Stanford University
,
Stanford, CA
.
2.
GU
,
Z.
, and
Sato
,
H.
,
2002
, “
Performance of Supercritical Cycles for Geothermal Binary Design
,”
J. Energy Convers. Manage.
,
43
(
7
), pp.
961
971
.
3.
GU
,
Z.
, and
Sato
,
H.
,
2001
, “
Optimization of Cyclic Parameters of a Supercritical Cycle for Geothermal Power Generation
,”
J. Energy Convers. Manage.
,
42
(
12
), pp.
1409
1416
.
4.
Garg
,
P.
,
Kumar
,
P.
, and
Srinivasan
,
K.
,
2013
, “
Supercritical Carbon Dioxide Brayton Cycle for Concentrated Solar Power
,”
J. Supercrit. Fluids
,
76
, pp.
54
60
.
5.
Wright
,
S. A.
,
Randel
,
R. F.
,
Vernon
,
M. E.
,
Rocha
,
G. E.
, and
Pickard
,
P. S.
,
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,” Sandia National Laboratories, Albuquerque, NM,
Report No. SAND2010-0171
.
6.
Wright
,
S. A.
,
Convoy
,
T. M.
,
Parma
,
E. J.
,
Lewis
,
T. G.
,
Rocha
,
G. A.
, and
Suo-Anttila
,
A. J.
,
2011
, “
Summary of the Sandia Supercritical CO2 Development Program
,”
SCO2 Power Cycle Symposium
, Boulder, CO, May 24–25.
7.
Fuller
,
R. L.
, and
Eisemann
,
K.
,
2011
, “
Centrifugal Compressor Off-Design Performance for Super-Critical CO2
,” Supercritical CO2 Power Cycle Symposium,
Boulder, CO
.
8.
Gong
,
Y.
,
Carstens
,
N. A.
,
Driscoll
,
M. J.
, and
Matthews
,
I. A.
,
2006
, “
Analysis of Radial Compressor Options for Supercritical CO2 Power Conversion Cycles
,” MIT, Cambridge, MA,
Report No. MIT-GFR-034
.
9.
Pecnik
,
R.
, and
Colonna
,
P.
,
2011
, “
Accurate CFD Analysis of a Radial Compressor Operating With Supercritical CO2
,” Supercritical CO2 Power Cycle Symposium, Boulder, CO, May 24–25, pp.
1
8
.
10.
Rinaldi
,
E.
,
Pecnik
,
R.
, and
Colonna
,
P.
,
2013
, “
Steady State CFD Investigation of a Radial Compressor Operating With Supercritical CO2
,”
ASME
Paper No. GT2013-94580.
11.
Pecnik
,
R.
,
Rinaldi
,
E.
, and
Colonna
,
P.
,
2012
, “
Computational Fluid Dynamics of a Radial Compressor Operating With Supercritical CO2
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
122301
.
12.
Rinaldi
,
E.
,
Pecnik
,
R.
, and
Colonna
,
P.
,
2015
, “
Computational Fluid Dynamic Simulation of a Supercritical CO2 Compressor Performance Map
,”
ASME J. Eng. Gas Turbines Power
,
137
(
7
), p.
072602
.
13.
Schobeiri
,
M. T.
,
Abdelfattah
,
S.
, and
Chibli
,
H.
,
2012
, “
Investigating the Cause of Computational Fluid Dynamics Deficiencies in Accurately Predicting the Efficiency and Performance of High Pressure Turbines: A Combined Experimental and Numerical Study
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
101104
.
14.
Ghidoni
,
A.
,
Colombo
,
A.
,
Rebay
,
S.
, and
Bassi
,
F.
,
2013
, “
Simulation of the Transitional Flow in a Low Pressure Gas Turbine Cascade With a High-Order Discontinuous Galerkin Method
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071101
.
15.
Zhou
,
L.
,
Shi
,
W.
,
Lu
,
W.
,
Hu
,
B.
, and
Wu
,
S.
,
2012
, “
Numerical Investigations and Performance Experiments of a Deep-Well Centrifugal Pump With Different Diffusers
,”
ASME J. Fluids Eng.
,
134
(
7
), p.
071102
.
16.
Stel
,
H.
,
Amaral
,
G. D. L.
,
Negrão
,
C. O. R.
,
Chiva
,
S.
,
Estevam
,
V.
, and
Morales
,
R. E. M.
,
2013
, “
Numerical Analysis of the Fluid Flow in the First Stage of a Two-Stage Centrifugal Pump With a Vaned Diffuser
,”
ASME J. Fluids Eng.
,
135
(
7
), p.
071104
.
17.
Fu
,
Y.
,
Yuan
,
J.
,
Yuan
,
S.
,
Pace
,
G.
,
d'Agostino
,
L.
,
Huang
,
P.
, and
Li
,
X.
,
2014
, “
Numerical and Experimental Analysis of Flow Phenomena in a Centrifugal Pump Operating Under Low Flow Rates
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011102
.
18.
Jansen
,
K. E.
,
Whiting
,
C. H.
, and
Hulbert
,
G. M.
,
2000
, “
A Generalized-Alpha Method for Integrating the Filtered Navier–Stokes Equations With a Stabilized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
3–4
), pp.
305
319
.
19.
Whiting
,
C. H.
, and
Jansen
,
K. E.
,
2001
, “
A Stabilized Finite Element Formulation for the Incompressible Navier–Stokes Equations Using a Hierarchical Basis
,”
Int. J. Numer. Methods Fluids
,
35
(
1
), pp.
93
116
.
20.
Whiting
,
C. H.
,
Jansen
,
K. E.
, and
Dey
,
S.
,
2003
, “
Hierarchical Basis for Stabilized Finite Element Methods for Compressible Flows
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
47–48
), pp.
5168
5185
.
21.
Sahni
,
O.
,
Carothers
,
C. D.
,
Shephard
,
M. S.
, and
Jansen
,
K. E.
,
2009
, “
Strong Scaling Analysis of a Parallel, Unstructured, Implicit Solver and the Influence of the Operating System Interference
,”
Sci. Program.
,
17
, pp.
261
274
.
22.
Zhou
,
M.
,
2010
, “
Petascale Adaptive Computational Fluid Dynamics
,”
Ph.D. dissertation
,
MANE Department, Rensselaer Polytechnic Institute
,
Troy, NY
.
23.
Jansen
,
K. E.
,
1999
, “
A Stabilized Finite Element Method for Computing Turbulence
,”
Comput. Methods Appl. Mech. Eng.
,
174
(
3–4
), pp.
299
317
.
24.
Rodriguez
,
J. M.
,
2009
, “
Numerical Simulation of Two-Phase Annular Flow
,”
Ph.D. dissertation
,
MANE Department, Rensselaer Polytechnic Institute
,
Troy, NY
.
25.
Bolotnov
,
I.
,
Behafarid
,
F.
,
Shaver
,
D.
,
Antal
,
S. P.
,
Jansen
,
K. E.
, and
Podowski
,
M. Z.
,
2011
, “
Coupled DNS/RANS Simulation of Fission Gas Discharge During Loss-of-Flow Accident in GEN-IV Sodium Fast Reactor
,”
14th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH)
,
Toronto, Ontario, Canada
.
26.
Behafarid
,
F.
,
Shaver
,
D.
,
Bolotnov
,
I. A.
,
Jansen
,
K. E.
,
Antal
,
S. P.
, and
Podowski
,
M. Z.
,
2012
, “
Multiscale Approach to the Modeling of Fission Gas Discharge During Hypothetical Loss-of-Flow Accident in Gen-IV Sodium Fast Reactor
,”
International Congress on Advances in Nuclear Power Plants
(
ICAPP
),
Chicago, IL
.
27.
Behafarid
,
F.
,
Shaver
,
D.
,
Bolotnov
,
I. A.
,
Antal
,
S. P.
,
Jansen
,
K. E.
, and
Podowski
,
M. Z.
,
2013
, “
Coupled DNS/RANS Simulation of Fission Gas Discharge During Loss-of-Flow Accident in Generation IV Sodium Fast Reactor
,”
J. Nucl. Technol.
,
181
(
1
), pp.
44
55
.
28.
Gallaway
,
T.
,
Antal
,
S. P.
, and
Podowski
,
M. Z.
,
2008
, “
Multi-Dimensional Model of Fluid Flow and Heat Transfer in Generation-IV Supercritical Water Reactors by 1909–1916
,”
Nucl. Eng. Des.
,
238
(
8
), pp.
1909
1916
.
29.
Gallaway
,
T.
,
Antal
,
S. P.
,
Podowski
,
M. Z.
,
Bae
,
Y. Y.
,
Cho
,
B. H.
, and
Wulf
,
J. R.
,
2007
, “
The Development of a Modeling Framework for Multidimensional Analysis of Flow and Heat Transfer in Supercritical Fluids
,”
12th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH)
,
Pittsburgh, PA
.
You do not currently have access to this content.