We report analysis and measurements of the torque and flow of a ferrofluid in a cylindrical annulus subjected to a rotating magnetic field perpendicular to the cylinder axis. The presence of the inner cylinder results in a nonuniform magnetic field in the annulus. An asymptotic analysis of the ferrohydrodynamic torque and flow assuming linear magnetization and neglecting the effect of couple stresses indicated that the torque should have a linear dependence on field frequency and quadratic dependence on field amplitude. To the order of approximation of the analysis, no bulk flow is expected in the annular gap between stationary cylinders. Experiments measured the torque required to restrain a polycarbonate spindle surrounded by ferrofluid in a cylindrical container and subjected to the rotating magnetic field generated by a two-pole magnetic induction motor stator, as a function of the applied field amplitude and frequency, and for various values of the geometric aspect ratios of the problem. The ultrasound velocity profile method was used to measure the azimuthal and axial velocity profiles in the ferrofluid contained in the annular gap of the apparatus. Flow measurements show the existence of a bulk azimuthal ferrofluid flow between stationary coaxial cylinders with a negligible axial velocity component. The fluid was found to corotate with the applied magnetic field. Both the torque and flow measurements showed power-of-one dependence on frequency and amplitude of the applied magnetic field. This analysis and these experiments indicate that the action of antisymmetric stresses is responsible for the torque measured on the inner cylinder, whereas the effect of body couples is likely responsible for bulk motion of the ferrofluid.

1.
Tsebers
,
A. O.
, 1975, “
Interfacial Stresses in the Hydrodynamics of Liquids With Internal Rotation
,”
Magn. Gidrodin.
0025-0015,
11
, pp.
79
82
.
2.
Lebedev
,
A. V.
, and
Pshenichnikov
,
A. F.
, 1991, “
Motion of a Magnetic Fluid in a Rotating Magnetic Fluid
,”
Magn. Gidrodin.
0025-0015,
1
, pp.
7
12
.
3.
Rosensweig
,
R. E.
,
Popplewell
,
J.
, and
Johnston
,
R. J.
, 1990, “
Magnetic Fluid Motion in Rotating Field
,”
J. Magn. Magn. Mater.
0304-8853,
85
, pp.
171
180
.
4.
Pshenichnikov
,
A. F.
, and
Lebedev
,
A. V.
, 2000, “
Tangential Stresses on the Magnetic Fluid Boundary and the Rotational Effect
,”
Magnetohydrodynamics (N.Y.)
0024-998X,
36
, pp.
254
263
.
5.
Rinaldi
,
C.
,
Gutman
,
F.
,
He
,
X.
,
Rosenthal
,
A. D.
, and
Zahn
,
M.
, 2005, “
Torque Measurements on Ferrofluid Cylinders in Rotating Magnetic Fields
,”
J. Magn. Magn. Mater.
0304-8853,
289
, pp.
307
310
.
6.
Moskowitz
,
R.
, and
Rosensweig
,
R. E.
, 1967, “
Nonmechanical Torque-Driven Flow of a Ferromagnetic Fluid by an Electromagnetic Field
,”
Appl. Phys. Lett.
0003-6951,
11
, pp.
301
303
.
7.
Brown
,
R.
, and
Horsnell
,
T. S.
, 1969, “
The Wrong Way Round
,”
Elec. Rev.
,
183
, pp.
235
236
.
8.
Zaitsev
,
V. M.
, and
Shliomis
,
M. I.
, 1969, “
Entrainment of Ferromagnetic Suspension by a Rotating Field
,”
J. Appl. Mech. Tech. Phys.
0021-8944,
10
, pp.
696
700
.
9.
Chaves
,
A.
,
Rinaldi
,
C.
,
Elborai
,
S.
,
He
,
X.
, and
Zahn
,
M.
, 2006, “
Bulk Flow in Ferrofluids in a Uniform Rotating Magnetic Field
,”
Phys. Rev. Lett.
0031-9007,
96
, pp.
194501
194504
.
10.
Shliomis
,
M. I.
,
Lyubimova
,
T. P.
, and
Lyubimov
,
D. V.
, 1988, “
Ferrohydrodynamics—An Essay on the Progress of Ideas
,”
Chem. Eng. Commun.
0098-6445,
67
, pp.
275
290
.
11.
Rinaldi
,
C.
, and
Chaves
,
A.
, “
Comment on Tangential Stresses on the Magnetic Fluid Boundary and Rotational Effect
,”
Magnetohydrodynamics
0025-0015, to be published.
12.
Kagan
,
I. Y.
,
Rykov
,
V. G.
, and
Yantovskii
,
E. I.
, 1973, “
Flow of a Dielectric Ferromagnetic Suspension in a Rotating Magnetic Field
,”
Magn. Gidrodin.
0025-0015,
9
, pp.
135
137
.
13.
Kikura
,
H.
,
Sawada
,
T.
, and
Tanahashi
,
T.
, 1991, “
Transportation of a Magnetic Fluid by Rotating Magnetic Field
,”
Electromagnetic Forces and Application: Proceedings of the International ISEM Symposium on Electromagnetic Force
, Sendai, Japan, January, pp.
103
104
.
14.
Takeda
,
Y.
, 1995, “
Velocity Profile Measurement by Ultrasonic Doppler Method
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
, pp.
444
453
.
15.
Kikura
,
H.
,
Aritomi
,
M.
, and
Takeda
,
Y.
, 2005, “
Velocity Measurement on Taylor-Couette Flow of a Magnetic Fluid With Small Aspect Ratio
,”
J. Magn. Magn. Mater.
0304-8853,
289
, pp.
342
345
.
16.
Kikura
,
H.
,
Takeda
,
Y.
, and
Durst
,
F.
, 1999, “
Velocity Profile Measurements of the Taylor Vortex Flow of a Magnetic Fluid Using the Ultrasonic Doppler Method
,”
Exp. Fluids
0723-4864,
26
, pp.
208
214
.
17.
Kikura
,
H.
,
Takeda
,
Y.
, and
Sawada
,
T.
, 1999, “
Velocity Profile Measurements of Magnetic Fluid Flow Using Ultrasonic Doppler Method
,”
J. Magn. Magn. Mater.
0304-8853,
201
, pp.
276
280
.
18.
Rosensweig
,
R. E.
, 1997,
Ferrohydrodynamics
,
Dover
,
New York
.
19.
Dahler
,
J. S.
, and
Scriven
,
L. E.
, 1961, “
Angular Momentum of Continua
,”
Nature (London)
0028-0836,
192
, pp.
36
37
.
20.
Dahler
,
J. S.
, and
Scriven
,
L. E.
, 1963, “
Theory of Structured Continua I. General Consideration of Angular Momentum and Polarization
,”
Proc. R. Soc. London, Ser. A
1364-5021,
276
, pp.
504
527
.
21.
Rinaldi
,
C.
, 2002, “
Continuum Modeling of Polarizable Systems
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
22.
Brenner
,
H.
, 1970, “
Rheology of Two-Phase Systems
,”
Annu. Rev. Fluid Mech.
0066-4189,
2
, pp.
137
176
.
23.
Dahler
,
J. S.
, 1959, “
Transport Phenomena in a Fluid Composed of Diatomic Molecules
,”
J. Chem. Phys.
0021-9606,
30
, pp.
1447
1475
.
24.
Shliomis
,
M. I.
, 1974, “
Concerning One Gyromagnetic Effect in a Liquid Paramagnet
,”
Sov. Phys. JETP
0038-5646,
39
, pp.
701
704
.
25.
Shliomis
,
M. I.
, 2001, “
Ferrohydrodynamics: Testing a Third Magnetization Equation
,”
Phys. Rev. E
1063-651X,
6406
, p.
060501
.
26.
Shliomis
,
M. I.
, 2001, “
Comment on ‘Magnetoviscosity and Relaxation in Ferrofluids’
,”
Phys. Rev. E
1063-651X,
6406
, pp.
063502
.
27.
Felderhof
,
B. U.
, 2000, “
Steady-State Magnetoviscosity of a Dilute Ferrofluid
,”
Magn. Gidrodin.
0025-0015,
36
, pp.
329
334
.
28.
Felderhof
,
B. U.
, 2000, “
Magnetoviscosity and Relaxation in Ferrofluids
,”
Phys. Rev. E
1063-651X,
62
, pp.
3848
3854
.
29.
Felderhof
,
B. U.
, 2001, “
Reply to Comment on ‘Magnetoviscosity and Relaxation in Ferrofluids’
,”
Phys. Rev. E
1063-651X,
6406
, pp.
063502
.
30.
Stratton
,
J. A.
, 1941,
Electromagnetic Theory
,
McGraw-Hill
,
New York
.
31.
Melcher
,
J. R.
, 1981,
Continuum Electromechanics
,
MIT Press
,
Cambridge, MA
.
32.
Rosenthal
,
A. D.
,
Rinaldi
,
C.
,
Franklin
,
T.
, and
Zahn
,
M.
, 2004, “
Torque Measurements in Spin-Up Flow of Ferrofluids
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
198
205
.
33.
Chantrell
,
R. W.
,
Popplewell
,
J.
, and
Charles
,
S. W.
, 1978, “
Measurements of Particle Size Distribution Parameters in Ferrofluids
,”
IEEE Trans. Magn.
0018-9464,
14
, pp.
975
977
.
34.
Lehlooh
,
A. F.
,
Mahmood
,
S. H.
, and
Willians
,
J. M.
, 2002, “
On the Particle Size Dependence of the Magnetic Anisotropy Energy Constant
,”
Physica B
0921-4526,
321
, pp.
159
162
.
35.
Sawada
,
T.
,
Nishiyama
,
H.
, and
Tabata
,
T.
, 2002, “
Influence of a Magnetic Field on Ultrasound Propagation in a Magnetic Fluid
,”
J. Magn. Magn. Mater.
0304-8853,
252
, pp.
186
188
.
36.
Motozawa
,
M.
, and
Sawada
,
T.
, 2005, “
Influence of Magnetic Field on Ultrasonic Propagation Velocity in Magnetic Fluids
,”
J. Magn. Magn. Mater.
0304-8853,
289
, pp.
66
69
.
37.
Takeda
,
Y.
, 1999, “
Ultrasonic Doppler Method for Velocity Profile Measurement in Fluid Dynamics and Fluid Engineering
,”
Exp. Fluids
0723-4864,
26
, pp.
177
178
.
38.
de Gans
,
B. J.
,
Blom
,
C.
,
Mellema
,
J.
, and
Philipse
,
A. P.
, 1999, “
Preparation and Magnetisation of a Silica-Magnetite Inverse Ferrofluid
,”
J. Magn. Magn. Mater.
0304-8853,
201
, pp.
11
13
.
39.
de Gans
,
B. J.
,
Blom
,
C.
,
Philipse
,
A. P.
, and
Mellema
,
J.
, 1999, “
Linear Viscoelasticity of an Inverse Ferrofluid
,”
Phys. Rev. E
1063-651X,
60
, pp.
4518
4527
.
40.
de Gans
,
B. J.
,
Duin
,
N. J.
, Den
Ende
,
D. V.
, and
Mellema
,
J.
, 2000, “
The Influence of Particle Size on the Magnerheological Properties of an Inverse Ferrofluid
,”
J. Chem. Phys.
0021-9606,
113
, pp.
2032
2042
.
41.
de Gans
,
B. J.
,
Hoekstra
,
H.
, and
Mellema
,
J.
, 1999, “
Non-linear Magnetorheological Behaviour of an Inverse Ferrofluid
,”
Faraday Discuss.
0301-7249,
112
, pp.
209
224
.
42.
Feng
,
S.
,
Graham
,
A. L.
,
Abbott
,
J. R.
, and
Brenner
,
H.
, 2006, “
Antisymmetric Stresses in Suspensions: Vortex Viscosity and Energy Dissipation
,”
J. Fluid Mech.
0022-1120,
563
, pp.
97
122
.
You do not currently have access to this content.