In transitional rough pipes, the present work deals with alternate four new scales, the inner wall transitional roughness variable ζ=Z+ϕ, associated with a particular roughness level, defined by roughness scale ϕ connected with roughness function U+, the roughness friction Reynolds number Rϕ (based on roughness friction velocity), and roughness Reynolds number Reϕ (based on roughness average velocity) where the mean turbulent flow, little above the roughness sublayer, does not depend on pipes transitional roughness. In these alternate variables, a two layer mean momentum theory is analyzed by the method of matched asymptotic expansions for large Reynolds numbers. The matching of the velocity profile and friction factor by Izakson-Millikan-Kolmogorov hypothesis gives universal log laws that are explicitly independent of pipe roughness. The data of the velocity profile and friction factor on transitional rough pipes provide strong support to universal log laws, having the same constants as for smooth walls. There is no universality of scalings in traditional variables and different expressions are needed for various types of roughness, as suggested, for example, with inflectional-type roughness, monotonic Colebrook-Moody roughness, etc. In traditional variables, the roughness scale, velocity profile, and friction factor prediction for inflectional pipes roughness are supported very well by experimental data.

1.
Millikan
,
C. B.
, 1938, “
A Critical Discussion of Turbulent Flow in Channels and Circular Tubes
,”
Proc. 5th Int. Cong. Appl. Mech.
(Cambridge),
J. P.
den Hartog
and
H.
Peters
, eds.,
Wiley/Chapman and Hall
,
New York-London
, pp.
386
392
.
2.
Raupach
,
M. R.
,
Antonia
,
R. A.
, and
Rajagopalan
,
S.
, 1991, “
Rough-Wall Turbulent Boundary Layer
,”
Adv. Appl. Mech.
0065-2156,
44
, pp.
1
25
.
3.
Jimenez
,
J.
, 2004, “
Turbulent Flow Over Rough Walls
,”
Annu. Rev. Fluid Mech.
0066-4189,
36
, pp.
173
196
.
4.
Clauser
,
F. H.
, 1954, “
Turbulent Boundary Layers in Adverse Pressure Gradients
,”
J. Aeronaut. Sci.
0095-9812,
21
, pp.
91
108
.
5.
Hama
,
F. R.
, 1954, “
Boundary-Layer Characteristics for Rough and Smooth Surfaces
,”
Trans Society of Naval Architecture and Marine Engineers
,
62
, pp.
333
351
.
6.
Abe
,
K.
,
Matsumoto
,
A.
,
Munakata
,
H.
, and
Tani
,
I.
, 1990, “
Drag Reduction by Sang Grain Roughness
,” In
Structure of Turbulence and Drag Reduction
,
A.
Gyr
, ed.,
Springer-Verlag
, Berlin, pp.
341
348
.
7.
Schlichting
,
H.
, 1968,
Boundary Layer Theory
,
McGraw–Hill
, New York, p.
505
.
8.
Grigson
,
C.
, 1992, “
Drag Losses of New Ships Caused by Hull Finish
,”
J. Ship Res.
0022-4502,
36
(
2
), pp.
182
196
.
9.
Patel
,
V. C.
, 1998, “
Perspective: Flow at High Reynolds Number and Over Rough Surfaces: Achilles Heel of CFD
,”
J. Fluids Eng.
0098-2202,
120
, pp.
434
444
.
10.
Krogstad
,
P.-A.
,
Antonia
,
R. A.
, and
Browne
,
L. W. B.
, 1992, “
Comparison Between Rough- and Smooth-Wall Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
245
, pp.
599
617
.
11.
Antonia
,
R. A.
, and
Krogstad
,
P.-A.
, 2001, “
Turbulence Structure in Boundary Layer Over Different Types of Surface Roughness
,”
Fluid Dyn. Res.
0169-5983,
28
, pp.
139
157
.
12.
Granville
,
P. S.
, 1987, “
Three Indirect Methods for Drag Characterization of Arbitrary Rough Surfaces on Flat Plate
,”
J. Ship Res.
0022-4502,
31
, pp.
70
77
.
13.
Schultz
,
M. P.
, and
Myers
,
A.
, 2003, “
Comparison of Three Roughness Function Determination Methods
,”
Exp. Fluids
0723-4864,
35
(
4
), pp.
372
379
.
14.
Nikuradse
,
J.
, 1933, “
Laws of Flow in Rough Pipe
,” VI, Forchungsheft N-361, (English translation NACA TM 1292, 1950).
15.
Streeter
,
V. L.
, 1936, “
Frictional Resistance in Artificially Roughened Pipes
,”
Trans. ASCE
,
61
, pp.
163
186
.
16.
Perry
,
A. E.
, and
Abell
,
C. K.
, 1977, “
Asymptotic Similarity of Turbulence Structures in Smooth and Rough Walled Pipes
,”
J. Fluid Mech.
0022-1120,
79
, pp.
785
799
.
17.
Shockling
,
M. A.
, 2005, “
Turbulent Flow in Rough Pipe
,” MSE thesis, Princeton University.
18.
Shockling
,
M. A.
,
Allen
,
J. J.
, and
Smits
,
A. J.
, 2006, “
Roughness Effects in Turbulent Pipe Flow
,”
J. Fluid Mech.
0022-1120,
564
, pp.
267
285
.
19.
Smits
,
A. J.
,
Shockling
,
M. A.
, and
Allen
,
J. J.
, 2005, “
Turbulent Flow in Smooth and Rough Pipes
,”
Paper AIAA-2005-4807, 35th AIAA Fluid Dynamics Conference
, June 6–9, Toronto, p.
9
.
20.
Colebrook
,
C. F.
, 1939, “
Turbulent Flow in Pipes With Particular Reference to the Transition Region Between the Smooth and Rough Pipe Laws
,”
J. Inst. Civ. Eng
,
11
, pp.
133
156
.
21.
Moody
,
L. F.
, 1944, “
Friction Factors for Pipe Flow
,”
Trans. ASME
0097-6822,
66
, pp.
671
684
.
22.
Allen
,
J. J.
,
Shockling
,
M. A.
, and
Smits
,
A. J.
, 2005, “
Evaluation of a Universal Transitional Resistance Diagram for Pipes With Honed Surfaces
,”
Phys. Fluids
1070-6631,
17
, pp.
121
702
.
23.
Eggels
,
J. G. M.
,
Unger
,
F.
,
Wiess
,
M. H.
,
Westerweel
,
J.
,
Adrian
,
R. J.
,
Friedrich
,
R.
, and
Nieuwstadt
,
F. T. M.
, 1994, “
Fully Developed Turbulent Pipe Flow: A Comparison Between Direct Numerical Simulation and Experiments
,”
J. Fluid Mech.
0022-1120,
268
, pp.
175
209
.
24.
Quadrio
,
M.
, and
Luchini
,
P.
, 2004, “
Direct Numerical Simulation of the Turbulent Flow in a Pipe With Annular Cross Section
,”
Eur. J. Mech. B/Fluids
0997-7546,
21
, pp.
413
427
.
25.
Abe
,
H.
,
Kawamura
,
H.
, and
Matsuo
,
Y.
, 2001, “
Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow With Respect to Reynolds Number
,”
J. Fluids Eng.
0098-2202,
123
, pp.
382
393
.
26.
Leonardi
,
S.
,
Orlandi
,
P.
,
Smalley
,
R. J.
,
Djenidi
,
L.
, and
Antonia
,
R. A.
, 2003, “
Direct Numerical Simulations of Turbulent Channel Flow With Transverse Square Bars on One Wall
,”
J. Fluid Mech.
0022-1120,
491
, pp.
229
238
.
27.
Nagano
,
Y.
,
Hattori
,
H.
, and
Houra
,
T.
, 2004, “
DNS of Velocity and Thermal Fields in Turbulent Channel Flow With Transverse Rib Roughness
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
393
403
.
28.
Ashrafian
,
A.
,
Andersson
,
H. I.
, and
Manhart
,
M.
, 2004, “
DNS of Turbulent Flow in a Rod-Roughened Channel
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
373
383
.
29.
Krogstadt
,
P.-A.
,
Anderson
,
H. I.
,
Bakken
,
O. M.
, and
Ashrafian
,
A.
, 2005, “
An Experimental and Numerical Study of Channel Flow With Rough Walls
,”
J. Fluid Mech.
0022-1120,
530
, pp.
327
352
.
30.
Djendi
,
L.
,
Elavarasan
,
R.
, and
Antonoa
,
R. A.
, 1999, “
The Turbulent Boundary Layer Over Transverse Square Cavities
,”
J. Fluid Mech.
0022-1120,
395
, pp.
271
294
.
31.
Bakken
,
O. M.
,
Krogstad
,
P. A.
,
Ashrafian
,
A.
, and
Andersson
,
H. I.
, 2005, “
Reynolds Number Effects in the Outer Layer of the Turbulent Flow in a Channel With Rough Walls
,”
Phys. Fluids
1070-6631,
17
, pp.
1
16
.
32.
Afzal
,
N.
,
Seena
,
A.
, and
Bushra
,
A.
, 2006, “
Power Law Turbulent Velocity Profile in Transitional Rough Pipes
,”
J. Fluids Eng.
0098-2202,
128
, pp.
548
558
.
33.
Afzal
,
N.
, 2005, “
Scaling of Power Law Velocity Profile in Wall-bounded Turbulent Shear Flows
.” Paper No. AIAA-2005-0109,
43rd AIAA Aerospace Sciences Meeting and Exhibit
, Jan. 10–13, Reno, NV, p.
11
.
34.
Afzal
,
N.
, 2005, “
Analysis of Power Law and Log Law Velocity Profiles in Overlap Region of a Turbulent Wall Jet
,”
Proc. R. Soc. London, Ser. A
1364-5021,
46
, pp.
1889
1910
.
35.
Afzal
,
N.
, 1976, “
Millikan Argument at Moderately Large Reynolds Numbers
,”
Phys. Fluids
0031-9171,
19
, pp.
600
602
.
36.
Coles
,
D.
, 1969, “
The Young Person Guide to the Data
,” In
Proc. Computations of Turbulent Boundary Layer, 1968-AFOSR-IFP-Stanford Conference
,
II
, pp.
1
46
.
37.
Prandtl
,
L.
, 1935, “
The Mechanics of Viscous Fluids
,”
Aerodynamic Theory
,
III
,
W. F.
Durand
, ed.,
Springer Verlag
,
Berlin
, pp.
34
208
.
38.
McKeon
,
B. J.
,
Zagarola
,
M. V.
, and
Smits
,
A. J.
, 2005, “
A New Friction Factor Relationship for Fully Developed Pipe Flow
,”
J. Fluid Mech.
0022-1120,
538
, pp.
429
443
.
39.
Zagarola
,
M. V.
, and
Smits
,
A. J.
, 1998, “
Mean Flow Scaling in Turbulent Pipe Flow
,”
J. Fluid Mech.
0022-1120,
373
, pp.
33
79
.
40.
Bendrict
,
R.
,
Fundamentals of Pipe Flow
,
Wiley
, New York, p.
240
.
41.
Cebeci
,
T.
, 2004,
Analysis of Turbulent Flows
,
Elsevier
, New York, p.
114
.
42.
Flack
,
K. A.
,
Schultz
,
M. P.
, and
Shapiro
,
T. A.
, 2005, “
Experimental Support for Townsend’s Reynolds Number Similarity Hypothesis on Rough Walls
,”
Phys. Fluids
1070-6631,
17
, pp.
035102
-1–035102-
12
.
43.
Connelly
,
J. S.
,
Schultz
,
M. P.
, and
Flack
,
K. A.
, 2006, “
Velocity-Defect Scaling for Turbulent Boundary Layers With a Range of Relative Roughness
,”
Exp. Fluids
0723-4864,
40
, pp.
188
195
.
44.
McKeon
,
B. J.
, 2003, “
High Reynolds Number Turbulent Pipe Flow
,” Ph.D. thesis, Princeton University.
45.
McKeon
,
B. J.
,
Swanson
,
C. J.
,
Zagarola
,
M. V.
,
Donnelly
,
R. J.
, and
Smits
,
A. J.
, 2004, “
Friction Factor for Smooth Pipe Flow
,”
J. Fluid Mech.
0022-1120,
511
, pp.
41
44
.
46.
Patel
,
V. C.
, and
Head
,
M. R.
, 1969, “
Some Observations on Skin Friction and Velocity Profile in Fully Developed Pipe and Channel Flow
,”
J. Fluid Mech.
0022-1120,
38
, pp.
181
201
.
47.
Blasius
,
H.
, 1912, “
Das Aehnlichkeitsgesetz bei Reibungsvorgngen
,”
Z. Ver. Dtsch. Ing.
,
56
(
16
), pp.
639
643
.
48.
Afzal
,
N.
, 2006, “
Friction Factor for Transitional Rough Pipes
.” (unpublished).
49.
Afzal
,
N.
, and
Yajnik
,
K.
, 1973, “
Analysis of Turbulent Pipe and Channel Flows at Moderately Large Reynolds Number
,”
J. Fluid Mech.
0022-1120,
61
, pp.
23
31
.
50.
Afzal
,
N.
, 1982, “
Fully Developed Turbulent Flow in a Pipe: An Intermediate Layer
,”
Ing.-Arch.
0020-1154,
53
, pp.
355
377
.
51.
Zanoun
,
E. S.
, 2003, “
Answer to Some Open Questions in Wall-Bounded Laminar and Turbulent Flows
,” Doctor-Ingeniur, University of Erlangen-Nurnberg.
52.
Abe
,
H.
,
Kawamura
,
H.
, and
Matsuo
,
Y.
, 2004, “
Surface Heat-Flux Fluctuations in a Turbulent Channel up to Rτ=1020 with Pr=0.025 and 0.71
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
404
419
.
You do not currently have access to this content.