The tangential momentum accommodation coefficient (TMAC) is used to improve the accuracy of fluid flow calculations in the slip flow regime where the continuum assumption of zero fluid velocity at the surface is inaccurate because fluid “slip” occurs. Molecular dynamics techniques are used to study impacts of individual gas atoms upon solid surfaces to understand how approach velocity, crystal geometry, interatomic forces, and adsorbed layers affect the scattering of gas atoms, and their tangential momentum. It is a logical step in development of techniques estimating total TMAC values for investigating flows in micro- and nano-channels or orbital spacecraft where slip flow occurs. TMAC can also help analysis in transitional or free molecular flow regimes. The impacts were modeled using Lennard-Jones potentials. Solid surfaces were modeled approximately three atoms wide by three atoms deep by 40 or more atoms long face centered cubic (100) crystals. The gas was modeled as individual free atoms. Gas approach angles were varied from 10 to 70deg from normal. Gas speed was either specified directly or using a ratio relationship with the Lennard-Jones energy potential (energy ratio). To adequately model the trajectories and maintain conservation of energy, very small time steps (approximately 0.0005 of the natural time unit) were used. For each impact the initial and final tangential momenta were determined and after many atoms, TMAC was calculated. The modeling was validated with available experimental data for He gas atoms at 1770ms impacting Cu at the given angles. The model agreed within 3% of experimental values and correctly predicted that TMAC changes with angle. Molecular Dynamics results estimate TMAC values from high of 1.2 to low of 0.25, generally estimating higher coefficients at the smaller angles. TMAC values above 1.0 indicate backscattering, which numerous experiments have observed. The ratio of final to initial momentum, when plotted for a gas atom sequence spaced across a lattice cycle typically follows a discontinuous curve, with continuous portions forward and backscattering and discontinuous portions indicating multiple bounces. Increasing the energy ratio above a value of 5 tends to decrease TMAC at all angles. Adsorbed layers atop a surface influence the TMAC in accordance with their energy ratio. Even a single adsorbed layer can have a substantial effect, changing TMAC +20%. The results provide encouragement to continue model development and next evaluate gas flows with Maxwell temperature distributions involving numerous impact angles simultaneously.

1.
White
,
F.
, 1991,
Viscous Fluid Flow
,
McGraw Hill
, pp.
47
49
.
2.
Maxwell
,
J. C.
, 1879, “
On Stresses in Rarified Gases Arising from Inequalities of Temperature
,”
Philos. Trans. R. Soc. London
0370-2316,
170
, pp.
231
256
.
3.
Arkilic
,
E. B.
,
Breuer
,
K. S.
, and
Schmidt
,
M. A.
, 1994, “
Gaseous Flow in Micro channels. Application of Micro fabrication to Fluid Mechanics
,”
ASME FED
,
197
, pp.
57
66
.
4.
Pfahler
,
J.
,
Harley
,
J.
,
Bau
,
H.
, and
Zemel
,
J.
, 1991, “
Gas and Liquid Flow in Small Channels
,”
Winter Annual Meeting
, ASME, pp.
49
60
, ASME, Atlanta, GA.
5.
Barber
,
R. W.
,
Emerson
,
D. R.
, and
Gu
,
X.
, 2004, “
Rarefied Gas Dynamics in Micro-devices
,” http://www.cse.clrc.ac.uk/ceg/rgd.shtmlhttp://www.cse.clrc.ac.uk/ceg/rgd.shtml, Council for the Central Laboratory of the Research Councils (CCLRC).
6.
Herrero
,
F. A.
, 1985, “
The Lateral Surface Drag Coefficient of Cylindrical Spacecraft in a Rarefied Finite Temperature Atmosphere
,”
AIAA J.
0001-1452,
23
, pp.
862
867
.
7.
Griffin
,
M. D.
, and
French
,
J. R.
, 1991,
Space Vehicle Design
(
Education Series
),
AIAA
, Washington, DC.
8.
Gad-el-Hak
,
M.
, 1999, “
The Fluid Mechanics of Microdevices - The Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
0098-2202,
121
, pp.
5
33
.
9.
Berman
,
A. S.
, and
Maegley
,
W. J.
, 1972, “
Internal Rarefied Gas Flows with Backscattering
,”
Phys. Fluids
0031-9171,
15
, pp.
772
779
.
10.
Davis
,
D. H.
,
Levenson
,
L. L.
, and
Milleron
,
N.
, 1964, “
Effect of 'Rougher- than-Rough' Surfaces on Molecular Flow through Short Ducts
,”
J. Appl. Phys.
0021-8979,
35
, pp.
529
532
.
11.
Seidl
,
M.
, and
Steinheil
,
E.
, 1974, “
Measurement of Momentum Accommodation Coefficients on Surfaces Characterized by Auger Spectroscopy
,”
SIMS and LEED. Rarefied Gas Dynamics, Eighth International Symposium
, Stanford University, New York, NY, 9, E 9.1–E 9.12.
12.
Maegley
,
W. J.
, and
Berman
,
A. S.
, 1972, “
Transition from Free - Molecule to Continuum Flow in an Annulus
,”
Phys. Fluids
0031-9171,
15
, pp.
780
785
.
13.
Thomas
,
L. B.
, and
Lord
,
R. G.
, 1972, “
Comparative Measurements of Tangential Momentum and Thermal Accommodations on Polished and Roughened Steel Spheres
,”
Rarefied Gas Dynamics, Eighth International Symposium
, Stanford University, New York, NY, pp.
405
412
.
14.
Bentz
,
J. A.
,
Tompson
,
R. V.
, and
Loyalka
,
S. K.
, 1997, “
The Spinning Rotor Gauge: Measurements of Viscosity, Velocity Slip Coefficients, and Tangential Momentum Accommodation Coefficients for N-2 and CH4
,”
Vacuum
0042-207X,
48
, pp.
817
824
.
15.
Knechtel
,
E.
, and
Pitts
,
W.
, 1969, “
Experimental Momentum Accommodation on Metal Surfaces of Ions Near and Above Earth Satellite Speeds
,”
Rarefied Gas Dyn.
0539-0613,
5
, pp.
1257
1266
.
16.
Lord
,
R. G.
, 1976, “
Tangential Momentum Accommodation Coefficients of rare Gases on Polycrystalline Metal Surfaces. Rarefied Gas Dynamics
,”
Eighth International Symposium
, Stanford University, New York, NY, 10, pp.
531
538
.
17.
Porodnov
,
B. T.
,
Suetin
,
P. E.
,
Borisov
,
S. F.
, and
Akinshin
,
V. D.
, 1973, “
Experimental Investigation of Rarefied Gas Flows in Different Channels
,”
J. Fluid Mech.
0022-1120,
64
, pp.
417
437
.
18.
Liu
,
S. M.
,
Sharma
,
P. K.
, and
Knuth
,
E. L.
, 1979, “
Satellite Drag Coefficients Calculated from Measured Distributions of Reflected Helium Atoms
,”
AIAA J.
0001-1452,
17
, pp.
1314
1319
.
19.
Barber
,
R. W.
, and
Emerson
,
D. R.
, 2002, “
Numerical Simulation of Low Reynolds Number Slip Flow Past a Confined Sphere
,”
23rd International Symposium on Rarefied Gas Dynamics
, Whistler, Canada, Daresbury Laboratory, Daresbury, Warrington, England.
20.
Saltsburg
,
H.
, and
Smith
,
J. N.
, 1966, “
Molecular Beam Scattering from the (111) Plane of Silver
,”
J. Chem. Phys.
0021-9606,
45
, pp.
2175
2183
.
21.
Oman
,
R.
,
Bogan
,
A.
,
Weiser
,
C.
, and
Chou
,
H.
, 1964, “
Interactions of Gas Molecules with an Ideal Crystal Surface
,”
AIAA J.
0001-1452,
2
, pp.
1722
1730
.
22.
Oman
,
R.
, 1967, “
Numerical Calculations of Gas-Surface Interactions
,”
AIAA J.
0001-1452,
5
, pp.
1280
1287
.
23.
Knechtel
,
E.
, and
Pitts
,
W.
, 1973, “
Normal and Tangential Momentum Accommodation for Earth Satellite Conditions
,”
Astronaut. Acta
0004-6205,
18
, pp.
171
184
.
24.
Koplik
,
J.
,
Banavar
,
J.
, and
Willemsen
,
J.
, 1988, “
Molecular Dynamics of Poiseuille Flow and Moving Contact Lines
,”
Phys. Rev. Lett.
0031-9007,
60
, pp.
1282
1285
.
25.
Koplik
,
J.
, and
Banavar
,
J.
, 1998, “
No-Slip Condition for a Mixture of Two Liquids
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
5125
5128
.
26.
Cieplak
,
M.
,
Koplik
,
J.
, and
Banavar
,
J.
, 1999, “
Applications of Statistical Mechanics in Subcontinuum Fluid Dynamics
,”
Physica A
0378-4371,
274
, pp.
281
293
.
27.
Koplik
,
J.
,
Banavar
,
J.
, and
Willemsen
,
J.
, 1989, “
Molecular Dynamics of Fluid Flow at Solid Surfaces
,”
Phys. Fluids A
0899-8213,
1
, pp.
781
794
.
28.
Srivastava
,
G.
, 1990,
The Physics of Phonons
, IOP Publishing Ltd., Bristol, England.
29.
Eckert
,
E. R.
, and
Drake
,
R. M.
, 1987,
Analysis of Heat and Mass Transfer
,
Hemisphere Publishing Co.
, New York, NY.
30.
Hess
,
S.
, and
Kroger
,
M.
, 2002, “
Elastic and Plastic Behavior of Solid Models
,”
Technische Mechanik Band
,
22
, pp.
79
88
.
31.
Allen
,
M. P.
, and
Tildesley
,
D. J.
, 1989,
Computer Simulation of Liquids
,
J. W. Arrowsmith, Ltd.
, Bristol, England.
32.
Rapaport
,
D. C.
, 2004,
The Art of Molecular Dynamics Simulation
,
Cambridge University Press
, Cambridge, UK.
33.
Tomassone
,
M.
,
Couzis
,
A.
,
Maldarelli
,
Banavar J.
,
, and
Koplik
,
J.
, 2001, “
Molecular Dynamics Simulation of Gaseous-Liquid Phase Transitions of Soluble and Insoluble Surfactants at a Fluid Surface
,”
J. Chem. Phys.
0021-9606,
115
, pp.
8634
8642
.
34.
Delstar
,
2005, “
Electropolishing, Passivating and Mechanical Polishing
,” www.delstar.com/polishing.htmwww.delstar.com/polishing.htm, Delstar Metal Finishing, Inc.
35.
Finger
,
G.
,
Kapat
,
J.
, and
Bhattacharya
,
A.
, 2006, “
Analysis of Tangential Momentum Accommodation Coefficient Using Molecular Dynamics Simulation
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
, (AIAA, ed.), AIAA, Reno, NV.
36.
Tildesley
,
D. J.
, and
Madden
,
P. A.
, 1981, “
An Effective Pair Potential for Liquid Carbon Disulphide
,”
Mol. Phys.
0026-8976,
42
, pp.
1137
1156
.
37.
Murad
,
S.
, 1978, “
LINEAR and NONLINEAR. Quantum Chemistry Program Exchange
,”
QCPE
,
12
, pp.
357
.
38.
Maitland
,
G. C.
,
Rigby
,
M.
,
Smith
,
E. B.
, and
Wakeham
,
W. A.
, 1981,
Intermolecular Forces: Their Origin and Determination
,
Clarendon Press
, Oxford.
39.
English
,
C. A.
, and
Venables
,
J. A.
, 1974, “
The Structure of Diatomic Molecular Solids
,”
Proc. R. Soc. London
0962-8444,
A340
, pp.
57
80
.
You do not currently have access to this content.