A force field model to simulate turbulent flow over a surface with arbitrary roughness is described. A given roughness is decomposed into resolved and subgrid-scale roughness, conceptually similar to the flow decomposition in large eddy simulation (LES). For a given flow and Reynolds number, a Cartesian grid is selected to satisfy LES requirements. This grid determines the geometric features of the roughness that are formally resolved. The force field used to represent this resolved roughness is determined during the LES solution process, without any empirical input. The subgrid roughness that is not resolved is modeled by a random force distribution in which a drag coefficient is specified. Use of this approach to model surface roughness is demonstrated by calculations of the flow in a duct with a wavy wall with superimposed fine-grain roughness.

1.
Nikuradse, J., 1950, “Laws of Flow in Rough Pipes,” National Advisory Committee for Aeronautics, NACA TM 1292 (translation from VDI-Forschungsheft 361, 1933).
2.
Adams, J. C., and Hodge, B. K., 1977, “The Calculation of Compressible, Transitional, Turbulent and Relaminarizational Boundary Layers Over Smooth and Rough Surfaces Using an Extended Mixing Length Hypothesis,” AIAA Paper No. 77-682.
3.
Lin, T. C., and Bywater, R. J., 1980, “The Evaluation of Selected Turbulence Models for High-Speed Rough-Wall Boundary Layer Calculations,” AIAA Paper No. 80-0132.
4.
Finson, M. L., 1982, “A Model for Rough Wall Turbulent Heating and Skin Friction,” AIAA Paper No. 82-0199.
5.
Christoph
,
G. H.
, and
Pletcher
,
R. H.
,
1983
, “
Prediction of Rough-Wall Skin Friction and Heat Transfer
,”
AIAA J.
,
21
, pp.
509
515
.
6.
Taylor
,
R. P.
,
Coleman
,
H. W.
, and
Hodge
,
B. K.
,
1985
, “
Prediction of Turbulent Rough-Wall Skin Friction Using a Discrete Element Approach
,”
ASME J. Fluids Eng.
,
107
, pp.
251
257
.
7.
Maruyama
,
T.
,
1993
, “
Optimization of Roughness Parameters for Staggered Arrayed Cubic Blocks Using Experimental Data
,”
J. Wind. Eng. Ind. Aerodyn.
,
46
, pp.
165
171
.
8.
Patel
,
V. C.
,
1998
, “
Perspective: Flow at High Reynolds Number and Over Rough Surfaces—Achilles Heel of CFD
,”
ASME J. Fluids Eng.
,
120
, pp.
434
444
.
9.
Lin
,
C.-L.
,
Moeng
,
C.-H.
,
Sullivan
,
P. P.
, and
McWilliams
,
J. C.
,
1997
, “
The Effect of Surface Roughness on Flow Structures in a Neutrally Stratified Planetary Boundary Layer Flow
,”
Phys. Fluids
,
9
, pp.
3235
3249
.
10.
Patton
,
E. G.
,
Shaw
,
R. H.
,
Judd
,
M. J.
, and
Raupach
,
M. R.
,
1998
, “
Large-Eddy Simulation of Windbreak Flow
,”
Boundary-Layer Meteorol.
,
87
, pp.
275
306
.
11.
Miyake
,
Y.
,
Tsujimoto
,
K.
, and
Agata
,
Y.
,
2000
, “
A DNS of a Turbulent Flow in a Rough-Wall Channel Using Roughness Elements Model
,”
JSME Int. J.
,
43
(
2
), pp.
233
242
.
12.
Verzicco
,
R.
,
Mohd-Yusof
,
J.
,
Orlandi
,
P.
, and
Haworth
,
D.
,
2000
, “
Large Eddy Simulation in Complex Geometric Configurations Using Boundary Body Forces
,”
AIAA J.
,
38
, pp.
427
433
.
13.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid-Scale Eddy Viscosity Model
,”
Phys. Fluids A
,
3
, pp.
1760
1765
.
14.
Piomelli
,
U.
,
1993
, “
High Reynolds Number Calculations Using the Dynamic Subgrid-Scale Stress Model
,”
Phys. Fluids
,
5
, pp.
1484
1490
.
15.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids
,
4
, pp.
633
635
.
16.
Zang
,
Y.
,
Street
,
R. L.
, and
Koseff
,
J. R.
,
1994
, “
A Non-staggered Grid, Fractional Step Method for Time-Dependent Incompressible Navier-Stokes Equations in Curvilinear Coordinates
,”
J. Comput. Phys.
,
114
, pp.
18
33
.
17.
Buckles
,
T. J.
,
Hanratty
,
T. J.
, and
Adrian
,
R. J.
,
1984
, “
Turbulent Flow Over Large-Amplitude Wavy Surfaces
,”
J. Fluid Mech.
,
140
, pp.
27
44
.
18.
Henn
,
D. S.
, and
Sykes
,
R. I.
,
1999
, “
Large-Eddy Simulation of Flow Over Wavy Surfaces
,”
J. Fluid Mech.
,
383
, pp.
75
112
.
19.
Cui, J., Patel, V. C., and Lin, C.-L., 2000, “Large-Eddy Simulation of Turbulent Flow Over Rough Surfaces,” IIHR Report No. 413, IIHR—Hydroscience & Engineering (formerly Iowa Institute of Hydraulic Research), The University of Iowa, Iowa City, IA.
20.
Fadlun
,
E. A.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
,
2000
, “
Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
,
161
, pp.
35
60
.
21.
Goldstein
,
D.
,
Handler
,
R.
, and
Sirovich
,
L.
,
1993
, “
Modeling a No-Slip Flow Boundary With an External Force Field
,”
J. Comput. Phys.
,
105
, pp.
354
366
.
You do not currently have access to this content.