In this note we present the application of fractional calculus, or the calculus of arbitrary (noninteger) differentiation, to the solution of time-dependent, viscous-diffusion fluid mechanics problems. Together with the Laplace transform method, the application of fractional calculus to the classical transient viscous-diffusion equation in a semi-infinite space is shown to yield explicit analytical (fractional) solutions for the shear-stress and fluid speed anywhere in the domain. Comparing the fractional results for boundary shear-stress and fluid speed to the existing analytical results for the first and second Stokes problems, the fractional methodology is validated and shown to be much simpler and more powerful than existing techniques.

1.
Leibnitz, G. W., Letter from Hanover, Germany, September 30, 1695, to G. A. L’Hospital, Leibnizen Mathematische Schriften, 2, pp. 301–302. Olms Verlag, Hildesheim, Germany, 1962, First published in 1849.
2.
Liouville
,
J.
,
1932
, “
Me´moie: Sur le calcul des diffe´rentielles a` indices quelconques
,”
Journal Ecole Polytechniuqe
,
13
, p.
71
71
.
3.
Riemann, B., 1953, “Versuch einer allgemeinen Auffasung der Integration und Differentiation,” The Collected Works of Bernhard Riemann, H. Weber, ed., 2nd ed., Dover, New York.
4.
Holmgren
,
H. J.
,
1864
, “
Om differentialkalkylen med indices of hvad nature sam helst
,”
Kgl. Sv. Vetenskapsakademia Handl
,
11
, p.
1
1
.
5.
Euler, L., 1730, Me´moire dans le tome V des Comment, Saint Petersberg Anne´es, 55.
6.
Lagrange
,
J. L.
,
1772
, “
Sur une nouvelle espe`ce de calcul relatif a` la differentiation et a` l’integration des quantite´s variables
,”
Ouvres de Lagrange
,
3
, Gauthier-Villars, Paris, p.
441
441
.
7.
Fourier
,
J. B. J.
,
1822
, “
The´orie analytique de la chaleur
,”
Oeuvres de Fourier
,
1
, Didot, Paris, p.
508
508
8.
Weyl
,
H.
,
1917
, “
Bemerkungen zum Begriff des Differentialquotienten gebrochener Ordnung
,”
Vierteljschr. Naturforsch. Gesellsch., Zu¨rich
,
62
, p.
296
296
.
9.
Hardy
,
G. H.
, and
Littlewood
,
J. E.
,
1928
, “
Some properties of fractional integrals, I
,”
Math. Z.
,
27
, p.
565
565
.
10.
Kober
,
H.
,
1940
, “
On fractional integrals and derivatives
,”
Quarterly Journal of Mathematics Oxford Series
,
11
, p.
193
193
.
11.
Kuttner
,
B.
,
1953
, “
Some theorems on fractional derivatives
,”
Proc. London Math. Soc.
,
3
, p.
480
480
.
12.
Scott Blair
,
G. W.
,
Veinoglou
,
B. C.
, and
Caffyn
,
J. E.
,
1947
, “
Limitations of the Newtonian time scale in relation to non-equilibrium rheological states and a theory of quasiproperties
,”
Proc. R. Soc. London, Ser. A
,
187
, pp.
69
85
.
13.
Graham
,
A.
,
Scott Blair
,
G. W.
, and
Withers
,
R. F. J.
,
1961
, “
A methodological problem in rheology
,”
British Journal Philosophical Science
,
11
, pp.
265
278
.
14.
Belavin
,
V. A.
,
Nigmatullin
,
R. Sh.
,
Miroshnikov
,
A. I.
, and
Lutskaya
,
N. K.
,
1964
, “
Fractional differentiation of oscillographic polarograms by means of an electrochemical two-terminal network (in Russian)
,”
Trudy Kazan Aviatsion Institutel
,
5
, pp.
144
152
.
15.
Oldham
,
K. B.
,
1972
, “
Signal-independent electroanalytical method
,”
Anal. Chem.
,
44
, pp.
196
208
.
16.
Grenness
,
M.
, and
Oldham
,
K. B.
,
1972
, “
Semiintegral electroanalysis: theory and verification
,”
Anal. Chem.
,
44
, pp.
1121
1139
.
17.
Somorjai
,
R. L.
,and
Bishop
,
D. M.
,
1970
, “
Integral-transformation trial functions of the fractional-integral class
,”
Phys. Rev. A
,
1
, pp.
1013
1026
.
18.
White, F. M., 1991, Viscous Fluid Flow, McGraw-Hill, New York.
19.
Schlichting, H., 1978, Boundary Layer Theory (translated by J. Kestin), McGraw-Hill, New York.
20.
Oldham, K. B., and Spanier, J., 1974, The Fractional Calculus, Academic Press, New York.
21.
Riesz
,
M.
,
1949
, “
L’inte´gral de Riemann-Liouville et le proble`me de Cauchy
,”
Acta Math.
,
81
, p.
1
1
.
22.
Abramowitz, M., and Stegun, I. A., 1964, Handbook of Mathematical Functions, Dover, New York.
You do not currently have access to this content.