This paper presents a method for the propagation of uncertainty, modeled in a probabilistic framework, through a model-based simulation of rainflow on a rough terrain. The adopted model involves a system of conservation equations with associated nonlinear state equations. The topography, surface runoff coefficient, and precipitation data are all modeled as spatially varying random processes. The Karhunen-Loeve expansion is used to represent these processes in terms of a denumerable set of random variables. The predicted state variables in the model are identified with their coordinates with respect to the basis formed by the Polynomial Chaos random variables. A system of linear algebraic deterministic equations are derived for estimating these coordinates.

1.
Ghanem, R., and Pellissetti, M., 2001, “Adaptive data refinement in the spectral stochastic finite element method,” to appear, Communications in Numerical Methods in Engineering.
2.
Horton, R. E., Surface Runoff Phenomena, Edwards Brothers Inc., Ann Arbor, MI.
3.
Henderson
,
F. M.
, and
Woodings
,
R. A.
,
1964
, “
Overland Flow and Groundwater Flow from a Steady Rainfall of Finite Duration
,”
J. Geophys. Res.
,
69
, No.
8
,
1531
1540
.
4.
Ocerton, D. E., and Meadows, M. E., 1976, Stormwater Modeling, Academic Press, NY, 11976.
5.
Emmerich
,
W. E.
,
Woolhiser
,
D. A.
, and
Shirley
,
D. E.
,
1989
, “
Comparison of Lumped and Distributed Models for Chemical Transport by Surface Runoff
,”
J. Environ. Qual.
,
18
, pp.
120
126
.
6.
Bedient, P., and Huber, W., 1992, Hydrology and Floodplain Analysis, Addison-Wesley.
7.
Liu
,
W. K.
,
Belytschko
,
T.
, and
Mani
,
A.
,
1986
, “
Random Field Finite Elements
,”
Int. J. Numer. Methods Eng.
,
23
, pp.
1831
1845
.
8.
Emery
,
A. F.
, and
Fadale
,
T. D.
,
1997
, “
Handling Temperature Dependent Properties and Boundaries Conditions in Stochastic Finite Element Analysis
,”
Numer. Heat Transfer, Part A
,
31
, pp.
37
51
.
9.
Adomian, G., 1983, Stochastic Systems, Academic Press, NY.
10.
Spanos
,
P. D.
, and
Ghanem
,
R.
,
1989
, “
Stochastic Finite Element Expansion for Random Media
,”
J. Eng. Mech.
,
115
, No.
5
5
.
11.
Ghanem, R. G., and Spanos, P.D., 1991, “Stochastic Finite Elements: A Spectral Approach,” Springer-Verlag.
12.
Ghanem
,
R.
, and
Dham
,
S.
,
1998
, “
Stochastic Finite Element Analysis for Multiphase Flow in Heterogeneous Porous Media
,”
Transp. Porous Media
,
32
, pp.
239
262
.
13.
Ghanem
,
R.
,
1998
, “
Scales of fluctuation and the propagation of uncertainty in random porous media
,”
Water Resour. Res.
,
34
, No.
9
, pp.
2123
2136
.
14.
Ghanem
,
R.
,
1999
, “
Higher-Order Sensitivity of Heat Conduction Problems to Random Data Using the Spectral Stochastic Finite Element Method
,”
ASME J. Heat Transfer
,
121
, May, pp.
290
299
.
15.
Hromadka
,
H.
, and
Nestlinger
,
A. J.
,
1986
, “
Estimating water shed S-graphs using a diffusion flow model
,”
Adv. Water Resour.
,
8
, No.
4
, pp.
214
218
.
16.
Akan, A. O., and Yen, B. C., 1981, “Diffusion-Wave Flood Routing in Channel Networks,” J. Hydraul. Div., Am. Soc. Civ. Eng., 107, No. HY6, June.
17.
Le Maitre, O., Knio, O., Najm, H., and Ghanem, R., 2002, “A stochastic projection method for fluid flow: Basic formulation,” to appear, J. Comput. Phys.
You do not currently have access to this content.