Abstract

The sustainability of modern human civilization is significantly concerned with enhancing sustainable energy resources. Vertical-Axis Wind Turbines (VAWTs) gained a promising impact on the global energy mix due to their belief in sustainable energy solutions. This paper presents an integrated study of the dynamic performance and fatigue-life characteristics of the optimized Savonius-rotor VAWT composite blades. Furthermore, this paper introduces an experimental validation, numerical modeling, and visualization/verification study of the optimized VAWT composite blades and assesses its impact on the whole performance of the optimized Savonius VAWTs. Four combination levels of the optimal settings of the S-VAWT composite blade configurations are designed, modeled, simulated, and fabricated of Carbon/Glass—Polyester. The modal parameters such as natural frequency, mode shape, and damping factor are investigated using fast Fourier transformer (FFT) analyzer. The numerical finite element models (FEM) are generated to model, visualize, simulate, and predict the dynamic nature and fatigue-life characteristics of the optimal S-VAWT composite blade configurations. A correlation between the experimental and numerical results is established. The study findings highlight the significant impact of VAWT composite blades in enhancing the dynamic performance and fatigue-life characteristics of Savonius VAWTs. Furthermore, a small damage percentage of 2.8% predicted by the finite element analysis (FEA) for the optimal S-VAWT composite blade configuration validated the sustainability of the VAWT composite blade configurations in dynamic loading conditions.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Twidell
,
J.
, and
Weir
,
T.
,
2015
,
Renewable Energy Resources
, 3rd ed.,
Routledge, Taylor & Francis Group
,
New York
, pp.
267
277
.
2.
Nelson
,
V.
, and
Starcher
,
K.
,
2019
,
Wind Energy, Renewable Energy and The Environment
,
CRC Press
,
New York
.
3.
Jain
,
P.
,
2011
,
Wind Energy Engineering
,
The McGraw-Hill, Inc.
,
New York
.
4.
Rosato
,
M. A.
,
2019
,
Small Wind Turbines for Electricity and Irrigation; Design and Construction
,
CRC Press, LLC
,
Boca Raton, FL
.
5.
Ali
,
M. H.
,
2012
,
Wind Energy Systems, Solutions for Power Quality and Stabilization
,
CRC Press, LLC
,
Boca Raton, FL
.
6.
Anderson
,
C.
,
2020
,
Wind Turbines: Theory and Practice
,
Cambridge University Press
,
Cambridge, UK
.
7.
Aissaoui
,
A.
, and
Tahour
,
A.
,
2016
,
Wind Turbines Design, Control, and Applications
,
ExLi4EvA
.
8.
Muscolo
,
G.
, and
Molfino
,
R.
,
2014
, “
From Savonius to Bronzinus: A Comparison Among Vertical Wind Turbines
,”
Energy Procedia
,
50
, pp.
10
18
.
9.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
050801
.
10.
Sarma
,
J.
,
Jain
,
S.
,
Mukherjee
,
P.
, and
Saha
,
U. K.
,
2021
, “
Hybrid/Combined Darrieus–Savonius Wind Turbines: Erstwhile Development and Future Prognosis
,”
ASME J. Sol. Energy Eng.
,
143
(
5
), p.
050801
.
11.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Evolution and Progress in the Development of Savonius Wind Turbine Rotor Blade Profiles and Shapes
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
030801
.
12.
Zemamou
,
M.
,
Aggour
,
M.
, and
Toumi
,
A. A.
,
2017
, “
Review of Savonius Wind Turbine Design and Performance
,”
Energy Procedia
,
141
, pp.
383
388
.
13.
Lee
,
J. H.
,
Lee
,
Y. T.
, and
Lim
,
H. C.
,
2016
, “
Effect of Twist Angle on the Performance of Savonius Wind Turbine
,”
Renewable Energy
,
89
, pp.
231
244
.
14.
Talukdar
,
P. K.
,
Alom
,
N.
,
Rathod
,
U. H.
, and
Kulkarni
,
V.
,
2022
, “
Alternative Blade Profile Based on Savonius Concept for Effective Wind Energy Harvesting
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
041304
.
15.
Mao
,
Z.
, and
Tian
,
W.
,
2015
, “
Effect of The Blade Arc Angle on the Performance of a Savonius Wind Turbine
,”
Adv. Mech. Eng.
,
7
(
5
), pp.
1
10
.
16.
Shah
,
S. R.
,
Kumar
,
R.
,
Raahemifar
,
K.
, and
Fung
,
A. S.
,
2018
, “
Design, Modeling and Economic Performance of a Vertical Axis Wind Turbine
,”
Energy Rep.
,
4
, pp.
619
623
.
17.
Bouzaher
,
M. T.
, and
Guerira
,
B.
,
2022
, “
Computational Investigation on the Influence of Expandable Blades on the Performance of a Savonius Wind Turbine
,”
ASME J. Sol. Energy Eng.
,
144
(
6
), p.
061003
.
18.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
Blade Design Criteria to Compensate the Flow Curvature Effects in H-Darrieus Wind Turbines
,”
ASME J. Turbomach.
,
137
(
1
), p.
011006
.
19.
Sree Raj
,
V.
,
Solank
,
R. S.
,
Chalamalla
,
V. K.
, and
Sinha
,
S. S.
,
2023
, “
Evaluation of the Performance of Twin-Rotor Vertical Axis Wind Turbines Employing Large-Eddy Simulations
,”
ASME J. Sol. Energy Eng.
,
146
(
1
), p.
011001
.
20.
Castelli
,
M. R.
, and
Benini
,
E.
,
2012
, “
Effect of Blade Inclination Angle on a Darrieus Wind Turbine
,”
ASME J. Turbomach.
,
134
(
3
), p.
031016
.
21.
Rathod
,
U. H.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2022
, “
On the Application of Machine Learning in Savonius Wind Turbine Technology: An Estimation of Turbine Performance Using Artificial Neural Network and Genetic Expression Programming
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
061301
.
22.
Dewan
,
A.
,
Bishnoi
,
A. K.
,
Singh
,
T. P.
, and
Tomar
,
S. S.
,
2023
, “
Elliptical Bladed Savonius Rotor for Wind Energy: Efficacy of RANS Modeling for Flow Characteristics
,”
ASME J. Energy Resour. Technol.
,
145
(
5
), p.
051301
.
23.
Bianchini
,
A.
,
Cangioli
,
F.
,
Papini
,
S.
,
Rindi
,
A.
,
Carnevale
,
E. A.
, and
Ferrari
,
L.
,
2015
, “
Structural Analysis of a Small H- Darrieus Wind Turbine Using Beam Models: Development and Assessment
,”
ASME J. Turbomach.
,
137
(
1
), p.
011003
.
24.
Chen
,
J.
,
Chen
,
L.
,
Nie
,
L.
,
Xu
,
H.
,
Mo
,
Y.
, and
Wang
,
C.
,
2016
, “
Experimental Study of Two-Stage Savonius Rotors With Different Gap Ratios and Phase Shift Angles
,”
J. Renewable Sustainable Energy
,
8
(
6
), p.
063302
.
25.
Shah
,
O. R.
,
Jamal
,
M. A.
,
Khan
,
T. I.
, and
Qazi
,
U. W.
,
2023
, “
Experimental and Numerical Evaluation of Performance of a Variable Pitch Vertical- Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
061303
.
26.
Halawa
,
T.
,
2022
, “
Numerical and Experimental Investigation of the Performance of a Vertical Axis Wind Turbine Based on the Magnetic Levitation Concept
,”
ASME J. Energy Resour. Technol.
,
144
(
9
), p.
094502
.
27.
Dhamotharan
,
V.
,
2015
, “Robust Design of Savonius Wind Turbine,”
Renewable Energy in the Service of Mankind
, Vol.
1
, pp.
913
923
.
28.
Wang
,
Z.
,
Wang
,
Y.
,
Zhuang
,
M.
,
2018
, “
Improvement of the Aerodynamic Performance of Vertical Axis Wind Turbines With Leading Edge Serrations and Helical Blades Using CFD and Taguchi Method
,”
Energy Convers. Manag.
,
177
(
May
), pp.
107
121
.
29.
Chan
,
C. M.
,
Bai
,
H. L.
, and
He
,
D. Q.
,
2018
, “
Blade Shape Optimization of the Savonius Wind Turbine Using a Genetic Algorithm
,”
Appl. Energy
,
213
, pp.
148
157
.
30.
Ghoneam
,
S.
,
Hamada
,
A.
, and
Sherif
,
T.
,
2020
, “
Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Composite Blades
,”
Int. J. Mech. Prod. Eng.
,
8
(
6
), pp.
65
72
.
31.
Ghoneam
,
S.
,
Hamada
,
A.
, and
Sherif
,
T.
,
2021
, “
Modeling and Optimization for the Dynamic Performance of Vertical-Axis Wind Turbine Composite Blades
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
021005
.
32.
Ghoneam
,
S. M.
,
Hamada
,
A. A.
, and
Sherif
,
T. S.
,
2021
, “
Dynamic Analysis of the Optimized Savonius Vertical Axis Wind Turbine Composite Blades
,”
ASME J. Sol. Energy Eng.
,
143
(
5
), p.
054502
.
33.
Ghoneam
,
S. M.
,
Hamada
,
A. A.
, and
Sherif
,
T. S.
,
2024
, “
Fatigue-Life Estimation of Vertical-Axis Wind Turbine Composite Blades Using Modal Analysis
,”
ASME J. Energy Resour. Technol.
,
146
(
3
), p.
031301
.
34.
Mallick
,
P. K.
,
2008
,
Fiber Reinforced Composites: Materials, Manufacturing, and Design
,
Taylor & Francis Group, LLC
,
London
.
35.
Chou
,
T.-W.
, and
Kelly
,
A.
,
1980
, “
Mechanical Properties of Composites
,”
Ann. Rev. Mater. Sci.
,
10
(
1
), pp.
229
259
.
36.
Vasiliev
,
V. V.
, and
Morozov
,
E. V.
,
2018
,
Advanced Mechanics of Composite Materials and Structures
,
Elsevier Ltd.
37.
Kalpakjian
,
S.
, and
Schmid
,
S. R.
,
2010
,
Manufacturing Engineering and Technology
,
Pearson Education, Inc., Pearson Prentice Hall
,
New York
, pp.
484
525
.
38.
Inman
,
D. J.
,
2014
,
Engineering Vibration
, 4th ed.,
Pearson Education, Inc.
,
New York
, pp.
573
616
.
39.
Brincker
,
R.
, and
Ventura
,
C.
,
2015
,
Introduction to Operational Modal Analysis
,
John Wiley & Sons, Ltd.
,
Hoboken, NJ
.
40.
Avitabile
,
P.
,
2001
, “
Experimental Modal Analysis
,”
Sound Vib.
, pp.
20
31
.
41.
He
,
J.
, and
Fu
,
Z.-F.
,
2001
,
Modal Analysis
,
Butterworth-Heinemann
,
Oxford, UK
.
42.
Harris
,
B.
,
2003
,
Fatigue in Composites: Science and Technology of the Fatigue Response of Fiber-Reinforced Plastics
,
Woodhead Publishing Ltd.
,
Sawston, UK
.
43.
Akin
,
J.
,
2010
,
Finite Element Analysis Concepts via SolidWorks
,
World Scientific Co.
,
Singapore
.
44.
Kurowski
,
P.
,
2019
,
Vibration Analysis with SolidWorks Simulation 2019
,
SDC Publications
,
Mission, KS
.
45.
Nudehi
,
S. S.
, and
Steffen
,
J. R.
,
2021
,
Analysis of Machine Elements Using SOLIDWORKS Simulation
,
SDC publications
,
Mission, KS
.
46.
Ross
,
P. J.
,
2005
,
Taguchi Techniques for Quality Engineering
,
McGraw-Hill
,
New York
.
47.
Montgomery
,
D. C.
,
2017
,
Design and Analysis of Experiments
,
John Wiley & Sons, Inc.
48.
Krishnaiah
,
K.
, and
Shahabudeen
,
P.
,
2012
,
Applied Design of Experiments and Taguchi Methods
,
PHI Learning Private Limited
,
New Delhi
.
49.
Myers
,
R. H.
,
Montgomery
,
D. C.
, and
Anderson-Cook
,
C. M.
,
2016
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
You do not currently have access to this content.