Abstract

Chemical flooding has gained ample popularity as an effective technique to increase oil displacement and sweep efficiencies. However, very limited numerical applications of chemical flooding (surfactant and polymer) in carbonates are reported in the literature. Therefore, a geochemical-based surface complexation model is developed to characterize the adsorption profile of surfactants for the first time across the length of a core/reservoir. The proposed model is validated with various zeta-potential measurements and also with a recently conducted chemical flooding study. Additionally, sensitivity analysis of various parameters is performed, and it is found that surfactant effluent concentration decreases with the increase in flood temperature. It is observed that salinity reduction decreases the surfactant adsorption, increases the ionic repulsion amid the rock surface charge and the chemical species polarity. Similarly, when the concentration of surfactant is increased, the adsorption of surfactant concentration increases. However, the increase in surfactant adsorption is insignificant. The effect of sulfate spiking in chemical flooding is also investigated and it is found that an increase in sulfate concentration reduces the adsorption of surfactant across the reservoir. Moreover, the lowermost surfactant adsorption level is achieved through the injection of diluted water (<0.1 mg/g).

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Nelson
,
R. C.
,
Lawson
,
J. B.
,
Thigpen
,
D. R.
, and
Stegemeier
,
G. L.
,
1984
, “
Cosurfactant-Enhanced Alkaline Flooding
,”
SPE/DOE Symposium on Enhanced Oil Recovery
,
Tulsa, OK
, Paper SPE 12672-MS
2.
Lake
,
L.
,
Johns
,
R. T.
,
Rossen
,
W. R.
, and
Pope
,
G. A.
,
2014
,
Fundamentals of Enhanced Oil Recovery
, 2nd ed.,
Society of Petroleum Engineers
,
Richardson, TX
.
3.
Khurshid
,
I.
,
Addad
,
Y.
, and
Afgan
,
I.
,
2023
, “
Geochemical Analysis of Hardness on the Adsorption of Surfactants in Carbonates Under Severe Thermodynamic Conditions: Surface Complexation Modeling Approach
,”
ASME J. Energy Resour. Technol.
,
145
(
11
), p.
111702
.
4.
Jang
,
S. H.
,
Liyanage
,
P. J.
,
Tagavifar
,
M.
,
Chang
,
L.
,
Upamali
,
K. A.
,
Lansakaa-P
,
D.
,
Weerasooriya
,
U.
, and
Pope
,
G. A.
,
2016
, “
A Systematic Method for Reducing Surfactant Retention to Extremely Low Levels
,”
SPE Improved Oil Recovery Conference
,
Tulsa, OK
, Paper SPE 179685.
5.
Khurshid
,
I.
,
Al-Shalabi
,
E. W.
,
Afgan
,
I.
,
Khurshid
,
B.
, and
Hassan
,
A. M.
,
2023
, “
Geochemical Modeling of Engineered Water Injection in Carbonates Under Harsh Conditions: New Insights With Ionic Adsorption
,”
ASME J. Energy Resour. Technol.
,
145
(
2
), p.
023004
.
6.
Adams
,
W. T.
, and
Schievelbein
,
V. H.
,
1987
, “
Surfactant Flooding Carbonate Reservoirs
,”
SPE Reserv. Eval. Eng. J.
,
2
(
4
), pp.
619
626
.
7.
Levitt
,
D.
,
Jackson
,
A.
,
Heinson
,
C.
,
Britton
,
L. N.
,
Malik
,
T.
,
Dwarakanath
,
V.
, and
Pope
,
G.
,
2009
, “
Identification and Evaluation of High-Performance EOR Surfactants
,”
SPE Reserv. Eval. Eng. J.
,
12
(
2
), pp.
243
253
.
8.
Solairaj
,
S.
,
Britton
,
C.
,
Kim
,
D. H.
,
Weerasooriya
,
U.
, and
Pope
,
G. A.
,
2012
, “
Measurement and Analysis of Surfactant Retention
,”
SPE Improved Oil Recovery Symposium
,
Tulsa, OK
,
Apr. 14–18
.
9.
Cottin
,
C.
,
Morel
,
D. C.
,
Levitt
,
D.
,
Cordelier
,
P.
, and
Pope
,
G.
,
2012
, “
Alkali Surfactant Gas Injection: Attractive Laboratory Results Under the Harsh Salinity and Temperature Conditions of the Middle East Carbonates
,”
Abu Dhabi International Petroleum Conference and Exhibition
,
Abu Dhabi, UAE
,
Nov. 11–14
.
10.
Levitt
,
D.
,
Klimenko
,
A.
,
Jouenne
,
S.
,
Chammerois
,
M.
, and
Bourrel
,
B.
,
2013
, “
Overcoming Design Challenges of Chemical EOR in High-Temperature, High Salinity Carbonates
,”
SPE Middle East Oil and Gas Show and Conference
,
Manama, Bahrain
,
Mar. 10–13
.
11.
Levitt
,
D.
, and
Bourrel
,
M.
,
2016
, “
Adsorption of EOR Chemicals Under Laboratory and Reservoir Conditions, Part III: Chemical Treatment Methods
,”
SPE Improved Oil Recovery Conference
,
Tulsa, OK
,
Apr. 11–13
.
12.
Sagi
,
A. R.
,
Puerto
,
M. C.
,
Bian
,
Y.
,
Miller
,
C. A.
,
Hirasaki
,
G. J.
,
Salehi
,
M.
,
Thomas
,
C. P.
, and
Kwan
,
J. T.
,
2013
, “
Laboratory Studies for Surfactant Flood in Low-Temperature, Low-Salinity Fractured Carbonate Reservoir
,”
SPE International Symposium on Oilfield Chemistry
,
The Woodlands, TX
,
Apr. 8–10
.
13.
Chevallier
,
E.
,
Moreau
,
P.
,
Renard
,
S.
,
Tabary
,
R.
,
Bazin
,
B.
,
Douarche
,
F.
, and
Oukhemanou
,
F.
,
2013
, “
Recent Progress in Surfactant Flooding in Carbonate Reservoirs
,”
IOR 2013–17th European Symposium on Improved Oil Recovery
,
St. Petersburg, Russia
,
Mar. 8–11
.
14.
Sharma
,
H.
,
Weerasooriya
,
U.
,
Pope
,
G. A.
, and
Mohanty
,
K. K.
,
2016
, “
Ammonia-Based ASP Floods in Carbonate Cores Containing Gypsum
,”
Fuel
,
184
, pp.
362
370
.
15.
Khurshid
,
I.
, and
Afgan
,
I.
,
2022
, “
Novel Insights Into the Geochemical Evaluation of Polymer Drive Composition on Surfactant Retention in Carbonates Using the Surface Complexation Modeling
,”
Sci. Rep.
,
12
(
1
), p.
17542
.
16.
Parra Perez
,
J. E.
,
2016
, “
Experimental Investigation of Viscous Forces During Surfactant Flooding of Fractured Carbonate Cores
,”
Master’s thesis
,
The University of Texas at Austin
,
Austin, TX
.
17.
Hama
,
S. M.
,
Manshad
,
A. K.
, and
Ali
,
J. A.
,
2023
, “
Review of the Application of Natural Surfactants in Enhanced Oil Recovery: State-of-the-Art and Perspectives
,”
Energy Fuels
,
37
(
14
), pp.
10061
10086
.
18.
Isaac
,
O. T.
,
Pu
,
H.
,
Oni
,
B. A.
, and
Samson
,
F. A.
,
2022
, “
Surfactants Employed in Conventional and Unconventional Reservoirs for Enhanced Oil Recovery—A Review
,”
Energy Rep.
,
8
, pp.
2806
2830
.
19.
Khurshid
,
I.
,
Al-Shalabi
,
E. W.
, and
Afgan
,
I.
,
2022
, “
New Insights Into Surfactant Adsorption Estimation During ASP Flooding in Carbonates Under Harsh Conditions Using Surface Complexation Modeling
,”
SPE Res. Eval. & Eng.
,
25
(
3
).
20.
Wang
,
D.
,
Maubert
,
M.
,
Pope
,
G. A.
,
Liyanage
,
P. J.
,
Jang
,
S. H.
,
Upamali
,
K. A.
,
Chang
,
L.
, et al
,
2018
, “
Reduction of Surfactant Retention in Limestones Using Sodium Hydroxide
,”
SPE J.
,
24
(
1
), pp.
92
115
.
21.
Mohnot
,
S. M.
, and
Bae
,
J. H.
,
1989
, “
A Study of Mineral/Alkali Reactions—Part 2
,”
SPE Reserv. Eval. Eng. J.
,
4
(
3
), pp.
381
390
.
22.
Arvidson
,
R. S.
,
Ertan
,
I. E.
,
Amonette
,
J. E.
, and
Luttge
,
A.
,
2003
, “
Variation in Calcite Dissolution Rates: A Fundamental Problem?
,”
Geochim. Cosmochim. Acta
,
67
(
9
), pp.
1623
1634
.
23.
Derkani
,
M. H.
,
Fletcher
,
A. J.
,
Fedorov
,
M.
,
Abdallah
,
W.
,
Sauerer
,
B.
,
Anderson
,
J.
, and
Zhang
,
Z. J.
,
2019
, “
Mechanisms of Surface Charge Modification of Carbonates in Aqueous Electrolyte Solutions
,”
Colloids Interfaces
,
3
(
4
), p.
62
.
24.
Zhang
,
P.
, and
Austad
,
T.
,
2006
, “
Wettability and Oil Recovery From Carbonates: Effects of Temperature and Potential Determining Ions
,”
Colloids Surf., A
,
279
(
1–3
), pp.
179
187
.
25.
Khurshid
,
I.
, and
Afgan
,
I.
,
2022
, “
Geochemical Investigation of Electrical Conductivity and Electrical Double Layer Based Wettability Alteration During Engineered Water Injection in Carbonates
,”
J. Petrol. Sci. Eng.
,
215
, p.
110627
.
26.
Heberling
,
F.
,
Trainor
,
T. P.
,
Lützenkirchen
,
J.
,
Eng
,
P.
,
Denecke
,
M. A.
, and
Bosbach
,
D.
,
2011
, “
Structure and Reactivity of the Calcite–Water Interface
,”
J. Colloid Interface Sci.
,
354
(
2
), pp.
843
857
.
27.
Pokrovsky
,
O. S.
, and
Schott
,
J.
,
2002
, “
Surface Chemistry and Dissolution Kinetics of Divalent Metal Carbonates
,”
Environ. Sci. Technol.
,
36
(
3
), pp.
426
432
.
28.
Al Mahrouqi
,
D.
,
Vinogradov
,
J.
, and
Jackson
,
M. D.
,
2017
, “
Zeta Potential of Artificial and Natural Calcite in Aqueous Solution
,”
Adv. Colloid Interface Sci.
,
240
, pp.
60
76
.
29.
Song
,
J.
,
Zeng
,
Y.
,
Wang
,
L.
,
Duan
,
X.
,
Puerto
,
M.
,
Chapman
,
W. G.
,
Biswal
,
S. L.
, and
Hirasaki
,
G. J.
,
2017
, “
Surface Complexation Modeling of Calcite Zeta Potential Measurements in Brines With Mixed Potential Determining Ions (Ca2+, CO32–, Mg2+, SO42) for Characterizing Carbonate Wettability
,”
J. Colloid Interface Sci.
,
506
, pp.
169
179
.
30.
Khurshid
,
I.
, and
Afgan
,
I.
,
2021
, “
Investigation of Water Composition on Formation Damage and Related Energy Recovery From Geothermal Reservoirs: Geochemical and Geomechanical Insights
,”
Energies
,
14
(
21
), p.
7415
.
31.
Kasha
,
A.
,
Al-Hashim
,
H.
,
Abdallah
,
W.
,
Taherian
,
R.
, and
Sauerer
,
B.
,
2015
, “
Effect of Ca2+, Mg2+, and SO42− Ions on the Zeta Potential of Calcite and Dolomite Particles Aged With Stearic Acid
,”
Colloids Surf., A
,
482
, pp.
290
299
.
32.
Khurshid
,
I.
,
Al-Shalabi
,
E. W.
, and
Alameri
,
W.
,
2020
, “
Influence of Water Composition on Formation Damage and Related Oil Recovery in Carbonates: A Geochemical Study
,”
J. Petrol. Sci. Eng.
,
195
, p.
107715
.
33.
Parkhurst
,
D. L.
, and
Appelo
,
C. A. J.
,
2016
, User’s Guide to Phreeqc (Version 2): A Computer Program for Speciation, Batch-Reaction One-Dimensional Transport, and Inverse Geochemical Calculations. Water-Resources Investigations Report 99–4259. US Geological Survey. Reston, VI.
34.
Tan
,
F. Q.
,
Ma
,
C. M.
,
Qin
,
J. H.
,
Li
,
X. K.
, and
Liu
,
W. T.
,
2022
, “
Factors Influencing Oil Recovery by Surfactant–Polymer Flooding in Conglomerate Reservoirs and Its Quantitative Calculation Method
,”
Petrol. Sci.
,
19
(
3
), pp.
1198
1210
.
35.
Khurshid
,
I.
, and
Al-Shalabi
,
E. W.
,
2022
, “
New Insights Into Modeling Disjoining Pressure and Wettability Alteration by Engineered Water: Surface Complexation Based Rock Composition Study
,”
J. Petrol. Sci. Eng.
,
208
, p.
10984
.
36.
Wu
,
Z.
,
Sun
,
Z.
,
Shu
,
K.
,
Jiang
,
S.
,
Gou
,
Q.
, and
Chen
,
Z.
,
2024
, “
Mechanism of Shale Oil Displacement by CO2 in Nanopores: A Molecular Dynamics Simulation Study
,”
Adv. Geo-Energy Res.
,
11
(
2
).
37.
Khurshid
,
I.
, and
Afgan
,
I.
,
2021
, “
Geochemical Investigation of CO2 Injection in Oil and Gas Reservoirs of Middle East to Estimate the Formation Damage and Related Oil Recovery
,”
Energies
,
14
(
22
), p.
7676
.
38.
Bataweel
,
M. A.
, and
Nasr-El-Din
,
H. A.
,
2011
, “
Minimizing Scale Precipitation in Carbonate Cores Caused by Alkalis in ASP Flooding in High Salinity/ High Temperature Applications
,”
Presented at the SPE International Symposium on Oilfield Chemistry
,
The Woodlands, TX
,
Apr. 11–13
.
39.
Karazincir
,
O.
,
Thach
,
S.
,
Wei
,
W.
,
Prukop
,
G.
,
Malik
,
T.
, and
Dwarakanath
,
V.
,
2011
, “
Scale Formation Prevention During ASP Flooding
,”
SPE International Symposium on Oilfield Chemistry
,
The Woodlands, TX
.
40.
Hocine
,
S.
,
Cuenca
,
A.
,
Magnan
,
A.
,
Tay
,
A.
, and
Moreau
,
P.
,
2016
, “
An Extensive Study of the Thermal Stability of Anionic Chemical EOR Surfactants—Part 1 Stability in Aqueous Solutions
,”
International Petroleum Technology Conference
,
Bangkok, Thailand
,
Nov. 14–16
.
41.
Khurshid
,
I.
,
Al-Shalabi
,
E. W.
,
Afgan
,
I.
, and
Al-Attar
,
H.
,
2022
, “
A Numerical Approach to Investigate the Impact of Acid-Asphaltene Sludge Formation on Worm-Holing During Carbonate Acidizing
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
063001
.
42.
Wu
,
Z.
,
Liu
,
H.
, and
Wang
,
X.
,
2017
, “
Adaptability Research of Thermal-Chemical Assisted Steam Injection in Heavy Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052901
.
43.
Khurshid
,
I.
,
Al-Shalabi
,
E. W.
,
Al-Attar
,
H.
, and
Al-Neaimi
,
A. K.
,
2020
, “
Analysis of Fracture Choking Due to Asphaltene Deposition in Fractured Reservoirs and Its Effect on Productivity
,”
J. Petrol. Explor. Prod. Technol.
,
10
(
8
), pp.
3377
3387
.
44.
Khurshid
,
I.
, and
Fujii
,
Y.
,
2021
, “
Geomechanical Analysis of Formation Deformation and Permeability Enhancement Due to Low-Temperature CO2 Injection in Subsurface Oil Reservoirs
,”
J. Petrol. Explor. Prod. Technol.
,
11
(
4
), pp.
1915
1923
.
45.
Wu
,
Z.
,
Jiang
,
S.
,
Xie
,
C.
,
Chen
,
K.
, and
Zhang
,
Z.
,
2022
, “
Production Performance of Multiple-Fractured Horizontal Well Based on Potential Theory
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
103005
.
46.
Khurshid
,
I.
,
Al-Attar
,
H.
, and
Alraeesi
,
A. R.
,
2018
, “
Modeling Cementation in Porous Media During Waterflooding: Asphaltene Deposition, Formation Dissolution, and Their Cementation
,”
J. Petrol. Sci. Eng.
,
161
, pp.
359
367
.
47.
Khurshid
,
I.
, and
Choe
,
J.
,
2018
, “
An Analytical Model for Re-Dissolution of Deposited Asphaltene in Porous Media During CO2 Injection
,”
Int. J. Oil Gas Coal Technol.
,
18
(
3–4
), pp.
338
352
.
48.
Khurshid
,
I.
, and
Choe
,
J.
,
2016
, “
Analysis of Thermal Disturbance and Formation Damages During Carbon Dioxide Injection in Shallow and Deep Reservoirs
,”
Int. J. Oil Gas Coal Technol.
,
11
(
2
), pp.
141
153
.
49.
Khurshid
,
I.
,
Fujii
,
Y.
, and
Choe
,
J.
,
2015
, “
Analytical Model to Determine CO2 Injection Time in a Reservoir for Optimizing Its Storage and Oil Recovery: A Reservoir Compaction Approach
,”
J. Petrol. Sci. Eng.
,
135
, pp.
240
245
.
50.
Khurshid
,
I.
, and
Choe
,
J.
,
2015
, “
Analysis of Asphaltene Deposition, Carbonate Precipitation, and Their Cementation in Depleted Reservoirs During CO2 Injection
,”
Greenhouse Gases: Sci. Technol.
,
5
(
5
), pp.
1
11
.
51.
Khurshid
,
I.
,
Lee
,
K. J.
, and
Choe
,
J.
,
2013
, “
Analyses of Thermal Disturbance in Drilling Deep and High-Temperature Formations
,”
Energy Sour., Part A: Recov., Utiliz. Environ. Eff.
,
35
(
16
), pp.
1487
1497
.
52.
Israelachvili
,
J.
,
2011
,
Intermolecular and Surface Forces
, 3rd ed.,
Academic Press, Elsevier
,
Waltham, MA
.
53.
Adak
,
A.
,
Bandyopadhyay
,
M.
, and
Pal
,
A.
,
2005
, “
Adsorption of Anionic Surfactant on Alumina and Reuse of the Surfactant-Modified Alumina for the Removal of Crystal Violet From Aquatic Environment
,”
J. Environ. Sci. Health, Part A: Toxic/Hazard. Substances Environ. Eng.
,
40
(
1
), pp.
167
182
.
54.
Hiorth
,
A.
,
Cathles
,
L. M.
, and
Madland
,
M. V.
,
2010
, “
The Impact of Pore Water Chemistry on Carbonate Surface Charge and Oil Wettability
,”
Transp. Porous Media
,
85
(
1
), pp.
1
21
.
55.
Ma
,
K.
,
Cui
,
L.
,
Dong
,
Y.
,
Wang
,
T.
,
Da
,
C.
,
Hirasaki
,
G. J.
, and
Biswal
,
S. L.
,
2013
, “
Adsorption of Cationic and Anionic Surfactants on Natural and Synthetic Carbonate Materials
,”
J. Colloid Interface Sci.
,
408
, pp.
164
172
.
56.
ShamsiJazeyi
,
H.
,
Verduzco
,
R.
, and
Hirasaki
,
G. J.
,
2014
, “
Reducing Adsorption of Anionic Surfactant for Enhanced Oil Recovery: Part II. Applied Aspects
,”
Colloids Surf., A
,
453
(
5
), pp.
168
175
.
57.
Tagavifar
,
M.
,
Sharma
,
H.
,
Wang
,
D.
,
Jang
,
S. H.
, and
Pope
,
G. A.
,
2018
, “
ASP Flooding With NaOH in Indiana Limestone: Analysis of Water-Rock Interactions and Surfactant Adsorption
,”
SPE J.
,
23
(
06
), pp.
2279
2301
.
58.
Bordeaux-Rego
,
F.
,
Mehrabi
,
M.
,
Sanaei
,
A.
, and
Sepehrnoori
,
K.
,
2021
, “
Improvements on Modelling Wettability Alteration by Engineered Water Injection: Surface Complexation at the Oil/Brine/Rock Contact
,”
Fuel
,
284
, p.
118991
.
59.
Brady
,
P. V.
, and
Krumhansl
,
J. L.
,
2013
, “
Surface Complexation Modeling for Waterflooding of Sandstones
,”
SPE J.
,
18
(
2
), pp.
214
218
.
60.
Mahani
,
H.
,
Keya
,
A. L.
,
Berg
,
S.
, and
Nasralla
,
R.
,
2017
, “
Electrokinetics of Carbonate/Brine Interface in Low-Salinity Waterflooding: Effect of Brine Salinity, Composition, Rock Type, and pH on ζ-Potential and a Surface-Complexation Model
,”
SPE J.
,
22
(
1
), pp.
53
68
.
61.
Thompson
,
D. W.
, and
Pownall
,
P. G.
,
1989
, “
Surface Electrical Properties of Calcite
,”
J. Colloid Interface Sci.
,
131
(
1
), pp.
74
82
.
62.
Buckley
,
J. S.
,
Takamura
,
K.
, and
Morrow
,
N. R.
,
1989
, “
Influence of Electrical Surface Charges on the Wetting Properties of Crude Oil
,”
SPE Reserv. Eng.
,
4
(
03
), pp.
332
340
.
63.
Dubey
,
S. T.
, and
Doe
,
P. H.
,
1993
, “
Base Number and Wetting Properties of Crude Oils
,”
SPE Reserv. Eng.
,
8
(
3
), pp.
195
200
.
64.
Wang
,
D.
,
2018
, “
Surfactant Retention in Limestones
,”
Master’s thesis
,
The University of Texas at Austin
,
Austin, TX
.
You do not currently have access to this content.