Abstract

Vertical-axis wind turbines (VAWTs) have gained significant impact due to their belief in sustainable wind energy solutions. The primary challenge with VAWTs is complicated structural dynamics and incorporating the optimal composite blade configuration. This article presents an integrated study of the dynamic performance and fatigue-life characteristics of modern VAWT composite blades. Considering the VAWT’s design parameters, the impact of variables such as stress level, loading conditions, fiber type, laminate stacking sequences, and lamina ply angles on the dynamic behavior and fatigue life of VAWTs is investigated. Stress-life curves are generated for glass/carbon-polyester VAWT composite blade configurations. Multi-response optimization using the Taguchi technique combined with the response surface methodology is employed to model, propose, and elect the optimal VAWT composite blade configurations. Finite element analyses (FEAs) are conducted within the solidworks simulation software to simulate and predict the dynamic performance and fatigue-life characteristics of VAWT composite blades. The results show that the composite blades significantly enhance the dynamic and fatigue-life characteristics of VAWTs. Furthermore, a small damage percentage of 2.5% characterized by the FEA for the optimal VAWT composite blade configuration validated the sustainability of the VAWT composite blades in dynamic loading conditions.

References

1.
Twidell
,
J.
, and
Weir
,
T.
,
2015
,
Renewable Energy Resources
, 3rd ed.,
Routledge, Taylor & Francis Group
,
New York
, pp.
267
277
.
2.
Nelson
,
V.
, and
Starcher
,
K.
,
2019
,
Wind Energy, Renewable Energy and the Environment
,
CRC Press
,
New York
.
3.
Jain
,
P.
,
2011
,
Wind Energy Engineering
,
The McGraw-Hill, Inc.
,
New York
.
4.
Rosato
,
M. A.
,
2019
,
Small Wind Turbines for Electricity and Irrigation; Design and Construction
,
CRC Press, LLC
,
Boca Raton, FL
.
5.
Ali
,
M. H.
,
2012
,
Wind Energy Systems, Solutions for Power Quality and Stabilization
,
CRC Press, LLC
,
Boca Raton, FL
.
6.
Anderson
,
C.
,
2020
,
Wind Turbines: Theory and Practice
,
Cambridge University Press
,
Cambridge, UK
.
7.
Aissaoui
,
A.
, and
Tahour
,
A.
,
2016
,
Wind Turbines Design, Control, and Applications
,
ExLi4EvA
.
8.
Muscolo
,
G.
, and
Molfino
,
R.
,
2014
, “
From Savonius to Bronzinus: A Comparison Among Vertical Wind Turbines
,”
Energy Proc.
,
50
, pp.
10
18
.
9.
Alom
,
N.
, and
Saha
,
U. K.
,
2018
, “
Four Decades of Research Into the Augmentation Techniques of Savonius Wind Turbine Rotor
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
050801
.
10.
Sarma
,
J.
,
Jain
,
S.
,
Mukherjee
,
P.
and
Saha
,
U. K.
,
2021
, “
Hybrid/Combined Darrieus–Savonius Wind Turbines: Erstwhile Development and Future Prognosis
,”
ASME J. Sol. Energy Eng.
,
143
(
5
), p.
050801
.
11.
Alom
,
N.
, and
Saha
,
U. K.
,
2019
, “
Evolution and Progress in the Development of Savonius Wind Turbine Rotor Blade Profiles and Shapes
,”
ASME J. Sol. Energy Eng.
,
141
(
3
), p.
030801
.
12.
Jin
,
X.
,
Zhao
,
G.
,
Gao
,
K.
, and
Ju
,
W.
,
2015
, “
Darrieus Vertical Axis Wind Turbine: Basic Research Methods
,”
Renew. Sustain. Energy Rev.
,
42
, pp.
212
225
.
13.
Tjiu
,
W.
,
Marnoto
,
T.
,
Mat
,
S.
,
Ruslan
,
M. H.
, and
Sopian
,
K.
,
2015
, “
Darrieus Vertical Axis Wind Turbine for Power Generation I: Assessment of Darrieus VAWT Configurations
,”
Renew. Energy
,
75
, pp.
50
67
.
14.
Zemamou
,
M.
,
Aggour
,
M.
, and
Toumi
,
A. A.
,
2017
, “
Review of Savonius Wind Turbine Design and Performance
,”
Energy Proc.
,
141
, pp.
383
388
.
15.
Lee
,
J. H.
,
Lee
,
Y. T.
, and
Lim
,
H. C.
,
2016
, “
Effect of Twist Angle on the Performance of Savonius Wind Turbine
,”
Renew. Energy
,
89
, pp.
231
244
.
16.
Talukdar
,
P. K.
,
Alom
,
N.
,
Rathod
,
U. H.
, and
Kulkarni
,
V.
,
2022
, “
Alternative Blade Profile Based on Savonius Concept for Effective Wind Energy Harvesting
,”
ASME J. Energy Resour. Technol.
,
144
(
4
), p.
041304
.
17.
Mao
,
Z.
, and
Tian
,
W.
,
2015
, “
Effect of the Blade Arc Angle on the Performance of a Savonius Wind Turbine
,”
Adv. Mech. Eng.
,
7
(
5
), pp.
1
10
.
18.
Shah
,
S.
,
Kumar
,
R.
,
Raahemifar
,
K.
, and
Fung
,
A.
,
2018
, “
Design, Modeling and Economic Performance of a Vertical Axis Wind Turbine
,”
Energy Rep.
,
4
, pp.
619
623
.
19.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2018
, “
Towards Optimal Aerodynamic Design of Vertical Axis Wind Turbines: Impact of Solidity and Number of Blades
,”
Energy
,
165
, pp.
1129
1148
.
20.
Naik
,
K.
, and
Sahoo
,
N.
,
2023
, “
Synergistic Effect of J-Shape Airfoil on the Performance of Darrieus-Type Straight-Bladed Vertical Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
145
(
10
), p.
101301
.
21.
Farzadi
,
R.
, and
Bazargan
,
M.
,
2023
, “
3D Numerical Simulation of the Darrieus Vertical Axis Wind Turbine With J-Type and Straight Blades Under Various Operating Conditions Including Self-Starting Mode
,”
Energy
,
278
, p.
128040
.
22.
Sarkar
,
D.
,
Shukla
,
S.
,
Alom
,
N.
,
Sharma
,
P.
, and
Bora
,
B. J.
,
2023
, “
Investigation of a Newly Developed Slotted Bladed Darrieus Vertical Axis Wind Turbine: A Numerical and Response Surface Methodology Analysis
,”
ASME J. Energy Resour. Technol.
,
145
(
5
), p.
051302
.
23.
Al Hamad
,
S.
,
Habash
,
O.
,
Hasan
,
A.
, and
Amano
,
R. S.
,
2022
, “
Effect of the J-Shaped Wind Turbine Airfoil Opening Ratio and Thickness on the Performance of Symmetrical Airfoils
,”
ASME J. Energy Resour. Technol.
,
144
(
5
), p.
051303
.
24.
Rathod
,
U. H.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2022
, “
On the Application of Machine Learning in Savonius Wind Turbine Technology: An Estimation of Turbine Performance Using Artificial Neural Network and Genetic Expression Programming
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
061301
.
25.
Dewan
,
A.
,
Bishnoi
,
A. K.
,
Singh
,
T. P.
, and
Tomar
,
S. S.
,
2023
, “
Elliptical Bladed Savonius Rotor for Wind Energy: Efficacy of RANS Modeling for Flow Characteristics
,”
ASME J. Energy Resour. Technol.
,
145
(
5
), p.
051301
.
26.
Benmoussa
,
A.
, and
Páscoa
,
J. C.
,
2023
, “
Enhancement of a Cycloidal Self-Pitch Vertical Axis Wind Turbine Performance Through DBD Plasma Actuators at Low Tip Speed Ratio
,”
Int. J. Thermofluids
,
17
, p.
100258
.
27.
Chen
,
J.
,
Chen
,
L.
,
Nie
,
L.
,
Xu
,
H.
,
Mo
,
Y.
, and
Wang
,
C.
,
2016
, “
Experimental Study of Two-Stage Savonius Rotors With Different Gap Ratios and Phase Shift Angles
,”
J. Renew. Sustain. Energy
,
8
(
6
), p.
063302
.
28.
Shah
,
O. R.
,
Jamal
,
M. A.
,
Khan
,
T. I.
, and
Qazi
,
U. W.
,
2022
, “
Experimental and Numerical Evaluation of Performance of a Variable Pitch Vertical-Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
144
(
6
), p.
061303
.
29.
Halawa
,
T.
,
2022
, “
Numerical and Experimental Investigation of the Performance of a Vertical Axis Wind Turbine Based on the Magnetic Levitation Concept
.”
ASME J. Energy Resour. Technol.
,
144
(
9
), p.
094502
.
30.
Wang
,
Z.
,
Wang
,
Y.
, and
Zhuang
,
M.
,
2018
, “
Improvement of the Aerodynamic Performance of Vertical Axis Wind Turbines With Leading Edge Serrations and Helical Blades Using CFD and Taguchi Method
,”
Energy Convers. Manag.
,
177
, pp.
107
121
.
31.
Dhamotharan
,
V.
,
2015
, “
Robust Design of Savonius Wind Turbine
,”
Renew. Energy Serv. Mankind
,
1
, pp.
913
923
.
32.
Chan
,
C. M.
,
Bai
,
H. L.
, and
He
,
D. Q.
,
2018
, “
Blade Shape Optimization of the Savonius Wind Turbine Using a Genetic Algorithm
,”
Appl. Energy
,
213
, pp.
148
157
.
33.
Ghoneam
,
S.
,
Hamada
,
A.
, and
Sherif
,
T.
,
2020
, “
Dynamic Analysis of Darrieus Vertical Axis Wind Turbine Composite Blades
,”
Int. J. Mech. Prod. Eng.
,
8
(
6
), pp.
65
72
.
34.
Ghoneam
,
S.
,
Hamada
,
A.
, and
Sherif
,
T.
,
2021
, “
Modeling and Optimization for the Dynamic Performance of Vertical-Axis Wind Turbine Composite Blades
,”
ASME J. Sol. Energy Eng.
,
143
(
2
), p.
021005
.
35.
Ghoneam
,
S. M.
,
Hamada
,
A. A.
, and
Sherif
,
T. S.
,
2021
, “
Dynamic Analysis of the Optimized Savonius Vertical Axis Wind Turbine Composite Blades
,”
ASME J. Sol. Energy Eng.
,
143
(
5
), p.
054502
.
36.
Mallick
,
P. K.
,
2008
,
Fiber Reinforced Composites: Materials, Manufacturing, and Design
,
Taylor & Francis Group, LLC
,
London
.
37.
Chou
,
T.-W.
, and
Kelly
,
A.
,
1980
, “
Mechanical Properties of Composites
,”
Ann. Rev. Mater. Sci.
,
10
(
1
), pp.
229
259
.
38.
Vasiliev
,
V. V.
, and
Morozov
,
E. V.
,
2018
,
Advanced Mechanics of Composite Materials and Structures
,
Elsevier Ltd
.
39.
Kalpakjian
,
S.
, and
Schmid
,
S. R.
,
2010
,
Manufacturing Engineering and Technology
,
Pearson Education, Inc., Pearson Prentice Hall
,
New York
, pp.
484
525
.
40.
Ross
,
P. J.
,
2005
,
Taguchi Techniques for Quality Engineering
,
McGraw-Hill
,
New York
.
41.
Montgomery
,
D. C.
,
2017
,
Design and Analysis of Experiments
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
42.
Krishnaiah
,
K.
, and
Shahabudeen
,
P.
,
2012
,
Applied Design of Experiments and Taguchi Methods
,
PHI Learning Private Limited
,
New Delhi
.
43.
Avitabile
,
P.
,
2001
, “
Experimental Modal Analysis
,”
Sound Vib.
,
35
(
1
), pp.
20
31
44.
He
,
J.
, and
Fu
,
Z.-F.
,
2001
,
Modal Analysis
,
Butterworth-Heinemann
,
Oxford, UK
.
45.
Harris
,
B.
,
2003
,
Fatigue in Composites: Science and Technology of the Fatigue Response of Fiber-Reinforced Plastics
,
Woodhead Publishing Ltd.
,
Sawston, UK
.
46.
Myers
,
R. H.
,
Montgomery
,
D. C.
, and
Anderson-Cook
,
C. M.
,
2016
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
47.
Akin
,
J.
,
2010
,
Finite Element Analysis Concepts via SolidWorks
,
World Scientific Co.
,
Singapore
.
48.
Kurowski
,
P.
,
2019
,
Vibration Analysis With SolidWorks Simulation 2019
,
SDC Publications
,
Mission, KS
.
49.
Nudehi
,
S. S.
, and
Steffen
,
J. R.
,
2021
,
Analysis of Machine Elements Using SOLIDWORKS Simulation
,
SDC Publications
,
Mission, KS
.
You do not currently have access to this content.