Abstract

The inflection point temperature of rheology (IPTR) of heavy oil transforming from a non-Newtonian fluid into a Newtonian fluid is a key parameter in the steam huff- and-puff process. It is particularly relevant in terms of optimizing injection parameters, calculating the heating radius, and determining well spaces. However, the current approach exhibits obvious shortcomings, such as the randomness of the selected tangent line and inadaptability for extra-heavy oil with high viscosity. For extra-heavy oil, the absolute error between the predicted and experimental values obtained using the tangent method has been reported to be between 15.6 °C and 16.9 °C with a relative error of between 17.4% and 18.8%. Therefore, this paper presents a novel method for calculating IPTR using viscosity–temperature data. The approach is based on the Arrhenius equation and quantitatively evaluates the IPTR according to the inflection point of the apparent activation energy. The IPTR values of four heavy-oil samples obtained from the Bohai Oilfield in China were quantitatively predicted according to viscosity–temperature data using the proposed method. The method's accuracy was verified by a series of rheological investigations on samples obtained from two heavy-oil wells. A regression of the rheological equations was performed in which 200 and 625 data points were tested, respectively, via regression to different temperatures, and the IPTR values of the different samples were obtained. The values of 75 °C and 100 °C obtained from a significant volume of experimental test data agreed well with the predicted values of 79 °C and 100 °C calculated by the proposed method. Additionally, the new method was used to predict IPTR according to the published viscosity–temperature data of ten heavy-oil samples from the Shengli Oilfield. Again, a good correspondence was found, and mean absolute and relative errors of 3 °C and 4.6%, respectively, were reported. Therefore, the proposed model was confirmed to improve the prediction accuracy of the existing method and provided a new method for calculating the IPTR of heavy oil.

References

1.
Wang
,
Z. H.
,
Liu
,
X. Y.
,
Luo
,
H.
,
Peng
,
B.
,
Sun
,
X.
,
Liu
,
Y.
, and
Rui
,
Z.
,
2021
, “
Foaming Properties and Foam Structure of Produced Liquid in Alkali/Surfactant/Polymer Flooding Production
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
103005
.
2.
He
,
Y. W.
,
Cheng
,
S. Q.
,
Sun
,
Z.
,
Chai
,
Z.
, and
Rui
,
Z.
,
2020
, “
Improving Oil Recovery Through Fracture Injection and Production of Multiple Fractured Horizontal Wells
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
053002
.
3.
Sheikholeslami
,
M.
,
Hayat
,
T.
,
Alsaedi
,
A.
, and
Abelman
,
S.
,
2017
, “
Numerical Analysis of EHD Nanofluid Force Convective Heat Transfer Considering Electric Field Dependent Viscosity
,”
Int. J. Heat Mass Transfer
,
108
(
Part B
), pp.
2558
2565
.
4.
Khansari
,
Z.
,
Kapadia
,
P.
,
Mahinpey
,
N.
, and
Gates
,
I. D.
,
2014
, “
A New Reaction Model for Low Temperature Oxidation of Heavy Oil: Experiments and Numerical Modeling
,”
Energy
,
64
(
1
), pp.
419
428
.
5.
Butler Roger
,
M.
,
1991
,
Thermal Recovery of Oil and Bitumen
,
Prentice Hall
,
Hoboken, NJ
.
6.
Zhu
,
J.
,
Li
,
C. X.
, and
Xin
,
P. G.
,
2011
, “
Analysis of Viscosity-Temperature Characteristics and Rheology Behavior for Heavy Oil
,”
J. Petrochem. Univ.
,
24
(
2
), pp.
66
68
.
7.
Dong
,
X.
,
Liu
,
H.
, and
Wang
,
Q.
,
2013
, “
Non-Newtonian Flow Characterization of Heavy Crude oil in Porous Media
,”
J. Pet. Explor. Prod. Technol.
,
3
(
1
), pp.
43
53
.
8.
Wang
,
S.
,
Huang
,
Y.
, and
Civan
,
F.
,
2006
, “
Experimental and Theoretical Investigation of the Zaoyuan Field Heavy Oil Flow Through Porous Media
,”
J. Pet. Sci. Eng.
,
50
(
2
), pp.
83
101
.
9.
Li
,
J.
,
Hao
,
L.
,
Cheng
,
L.
,
Hao
,
X.
, and
Huang
,
S.
,
2017
, “
A Novel Model to Investigate the Effects of Injector-Producer Pressure Difference on SAGD for Bitumen Recovery
,”
Int. J. Oil, Gas Coal Technol.
,
16
(
3
), pp.
217
235
.
10.
Dutt
,
A.
, and
Mandal
,
A.
,
2012
, “
Modified Analytical Model for Prediction of Steam Flood Performance
,”
J. Pet. Explor. Prod. Technol.
,
2
(
3
), pp.
117
123
.
11.
Jian
,
H.
,
Kang
,
Z.
,
Hui
,
Z.
,
Kang
,
X.
,
Wang
,
S.
, and
Zhang
,
X.
,
2016
, “
Hybrid Optimization Technique for Cyclic Steam Stimulation by Horizontal Wells in Heavy Oil Reservoir
,”
Comput. Chem. Eng.
,
84
, pp.
363
370
.
12.
Hou
,
J.
,
Xia
,
Z. Z.
,
Li
,
S. X.
,
Zhou
,
K.
, and
Lu
,
N.
,
2016
, “
Operation Parameter Optimization of a Gas Hydrate Reservoir Developed by Cyclic Hot Water Stimulation With a Separated Zone Horizontal Well Based on Particle Swarm Algorithm
,”
Energy
,
96
(
1
), pp.
581
591
.
13.
Zhang
,
Q.
,
Liu
,
H.
,
Kang
,
X.
,
Liu
,
Y.
, and
Li
,
G.
,
2021
, “
An Investigation of Production Performance by Cyclic Steam Stimulation Using Horizontal Well in Heavy Oil Reservoirs
,”
Energy
,
218
(
C
), p.
119500
.
14.
Yang
,
Y.
,
Huang
,
S.
,
Liu
,
Y.
,
Song
,
Q.
,
Wei
,
S.
, and
Xiong
,
H.
,
2016
, “
A Multistage Theoretical Model to Characterize the Liquid Level During Steam-Assisted-Gravity-Drainage Process
,”
SPE J.
,
22
(
1
), pp.
27
38
.
15.
Zhao
,
D. W.
,
Wang
,
J.
, and
Gates
,
I. D.
,
2013
, “
Optimized Solvent-Aided Steam-Flooding Strategy for Recovery of Thin Heavy Oil Reservoirs
,”
Fuel
,
112
, pp.
50
59
.
16.
Basta
,
G.
,
Ela
,
M.
,
El-Banbi
,
A.
,
El-Tayeb
,
S.
,
Desouky
,
E.
, and
Sayyouh
,
M. H.
,
2021
, “
Semi-Analytical Model to Predict the Performance of Cyclic Steam Stimulation Oil Wells
,”
J. Pet. Explor. Prod. Technol.
,
11
(
4
), pp.
1993
2007
.
17.
Yza
,
B.
,
Peng
,
L.
,
Xsa
,
B.
,
Hc
,
C.
, and
Yang
,
L. D.
,
2021
, “
Steam Conformance Investigation of Flow Control Devices Deployed in SAGD Injection and Production Horizontal Wells
,”
J. Pet. Sci. Eng.
,
205
(
2
), p.
108907
.
18.
Kumar
,
A.
, and
Hassanzadeh
,
H.
,
2021
, “
A Qualitative Study of the Impact of Random Shale Barriers on SAGD Performance Using Data Analytics and Machine Learning
,”
J. Pet. Sci. Eng.
,
205
(
4
), p.
108950
.
19.
Irani
,
M.
,
Sabet
,
N.
, and
Bashtani
,
F.
,
2021
, “
Horizontal Producers Deliverability in SAGD and Solvent Aided-SAGD Processes: Pure and Partial Solvent Injection
,”
Fuel
,
294
(
5
), p.
120363
.
20.
Jiang
,
Q.
,
Liu
,
J.
,
Wang
,
Z.
,
Jiang
,
G.
,
Huang
,
S.
,
Yu
,
C.
, and
Zhou
,
X.
,
2021
, “
Prediction of Top Water Flow Rate to SAGD Steam Chamber and Its Impact on Thermal Efficiency
,”
J. Pet. Sci. Eng.
,
205
(
3
), p.
108976
.
21.
Mahood
,
H. B.
,
Campbell
,
A. N.
,
Sharif
,
A. O.
, and
Thorpe
,
R. B.
,
2016
, “
Heat Transfer Measurement in a Three-Phase Direct-Contact Condenser Under Flooding Conditions
,”
Appl. Therm. Eng.
,
95
, pp.
106
114
.
22.
Cheng
,
L. S.
,
Liu
,
D.
,
Gao
,
H. H.
, and
Zhou
,
F. J.
,
2009
, “
The Study on Steam Flooding Frontier Prediction Model Considering Pseudo Mobility Ratio
,”
J. Southwest Pet. Univ., Sci. Technol. Ed.
,
31
(
2
), pp.
159
162
.
23.
Elbaloula
,
H.
,
Chen
,
J.
,
Tang
,
Z.
,
Wang
, and
Rdwan
,
M. F.
,
2020
, “
Feasibility Study and Numerical Simulation to Design the Steam Flooding Pilot Test Patterns
,”
J. Pet. Explor. Prod. Technol.
,
10
(
5
), pp.
2020
2031
.
24.
Fudk
,
A.
,
Ar
,
A.
,
Rgb
,
C.
,
Mzh
,
A.
, and
Csf
,
A.
,
2020
, “
Analyzing the Effect of Steam Quality and Injection Temperature on the Performance of Steam Flooding
,”
Energy Geosci.
,
2
(
1
), pp.
83
86
.
25.
Feng
,
G.
,
Li
,
Y.
, and
Yang
,
Z.
,
2020
, “
Performance Evaluation of Nitrogen-Assisted Steam Flooding Process in Heavy oil Reservoir via Numerical Simulation
,”
J. Pet. Sci. Eng.
,
189
, p.
106954
.
26.
Hou
,
J.
, and
Chen
,
Y. M.
,
1997
, “
An Improved Steam Soak Predictive Model
,”
Pet. Explor. Dev.
,
24
(
3
), pp.
53
56
.
27.
Escobar
,
E. M.
,
1999
, “Optimization Methodology for Cycle Steam Injection With Horizontal Wells,”
Doctoral dissertation
,
Texas A&M University
,
College Station, TX
.
28.
Bao
,
Y.
,
Wang
,
J.
,
Gates
,
I.
,
2016
, “
On the Physics of Cyclic Steam Stimulation
,”
Energy
,
115
(
1
), pp.
969
985
.
29.
Hou
,
J.
,
Wei
,
B.
,
Du
,
Q.
,
Wang
,
J.
,
Wang
,
Q.
, and
Zhang
,
G.
,
2016
, “
Production Prediction of Cyclic Multi-Thermal Fluid Stimulation in a Horizontal Well
,”
J. Pet. Sci. Eng.
,
146
, pp.
949
958
.
30.
Kuiqian
,
M. A.
, and
Liu
,
D.
,
2018
, “
Model for Capacity Forecasting of Thermal Soaking Recovery in Horizontal Wells in Heavy Oil Reservoirs
,”
J. Southwest Pet. Univ., Sci. Technol. Ed.
,
40
(
1
), pp.
114
121
.
31.
Dong
,
X.
,
Liu
,
H.
,
Pang
,
Z.
,
Wang
,
C.
, and
Lu
,
C.
,
2014
, “
Flow and Heat Transfer Characteristics of Multi-Thermal Fluid in a Dual-String Horizontal Well
,”
Num. Heat. Transf. Part A Appl.
,
66
(
2
), pp.
185
204
.
32.
Dong
,
X. H.
,
Liu
,
H. Q.
,
Zhang
,
Z. X.
, and
Wang
,
C.
,
2014
, “
The Flow and Heat Transfer Characteristics of Multi-thermal Fluid in Horizontal Wellbore Coupled With Flow in Heavy Oil Reservoirs
,”
J. Petrol. Sci. Eng.
,
122
, pp.
56
68
.
33.
Gros
,
R. P.
,
Pope
,
G. A.
, and
Lake
,
L. W.
,
1985
, “
Steam Soak Predictive Model. Society of Petroleum Engineers
,”
Paper Presented at SPE Annual Technical Conference and Exhibition
,
Las Vegas, NV
,
Sept. 1
, pp.
22
26
.
34.
Fan
,
C.
,
Zan
,
C.
,
Zhang
,
Q.
,
Ma
,
D.
,
Chu
,
Y.
,
Jiang
,
H.
,
Shi
,
L.
, and
Wei
,
F.
,
2014
, “
The Oxidation of Heavy Oil: Thermogravimetric Analysis and Non-isothermal Kinetics Using the Distributed Activation Energy Model
,”
Fuel Process. Technol.
,
119
, pp.
146
150
.
35.
Khan
,
M. R.
,
Albert
,
C.
, and
Harrison
,
J.
,
1995
,
Fundamentals of Rheological Properties of Heavy Oils and Heavy Oil Emulsions
.
18
,
385
391
.
36.
Bazyleva
,
A. B.
,
Hasan
,
M. A.
,
Fulem
,
M.
,
Becerra
,
M.
, and
Shaw
,
J. M.
,
2010
, “
Bitumen and Heavy Oil Rheological Properties: Reconciliation With Viscosity Measurements
,”
J. Chem. Eng. Data
,
5
(
3
), pp.
1389
1397
.
37.
Guo
,
Y. K.
,
Yang
,
J. T.
,
Jun-Ya
,
S. U.
, and
Wei
,
Q. Q.
,
2003
, “
Determination of Kinetic Parameters of Thermal Reaction for Residues With Activation Energy Distribution Model
,”
Acta Pet. Sin., Pet. Process. Sect.
,
19
(
5
), pp.
69
73
.
38.
Zhao
,
F. J.
,
Liu
,
Y. J.
,
Wang
,
G. Y.
,
Wang
,
T.
, and
Song
,
H. Y.
,
2010
, “
Study on Viscosity-Temperature and Rheological Properties of Daqing Heavy Oil
,”
Sci. Technol. Eng.
,
10
(
31
), pp.
7644
7647
.
39.
Zhao
,
R.
,
Gao
,
S.
,
Yang
,
F.
,
Huang
,
R.
,
Chen
,
Y.
, and
Liao
,
G.
,
2010
, “
Determination Method of Activation Energy During Heavy-Oil Combustion
,”
Acta Pet. Sin.
,
34
(
6
), pp.
1125
1130
.
40.
Zhu
,
J.
,
Chuan-Xian
,
L. I.
,
Xin
,
P. G.
, and
Dong
,
X. U.
,
2012
, “
Study on Microstructure and Rheology of Heavy oil
,”
J. Xian Shiyou Univ.
,
27
(
2
), pp.
54
57
.
41.
Sun
,
J. F.
,
2012
, “Research and Application on the Heavy oil Flow Mode,”
Doctoral Dissertation
,
China University of Geosciences (Beijing)
,
Beijing
.
42.
Prats
,
M.
,
1989
,
Thermal Oil Recovery[M]
,
Petroleum Industry Press
,
Beijing
, pp.
493
500
.
43.
Xia
,
H. Q.
,
Hui
,
L. I.
,
Liu
,
L.
, and
Zhou
,
J.
,
2006
, “
Study on Measuring of Heavy Oil Inflection Point Temperature
,”
Spec. Oil Gas Reservoirs
,
13
(
6
), pp.
49
51
.
44.
Dong
,
L.
,
2012
, “
Reservoir Applicability of Steam Stimulation Supplemented by Flue Gas
,”
China Offshore Oil Gas
,
24
(
S1
), pp.
62
66
.
45.
Li
,
X.
,
Li
,
X.
, and
Yang
,
J.
,
2000
, “
Study on Viscosity-Temperature and Rheological Properties of Super Viscous Crude in East Shan 6
,”
Oil Gas Recovery Technol.
,
7
(
3
), pp.
12
14
.
You do not currently have access to this content.