Abstract

The use of genetic optimization algorithms (GOA) has been shown to significantly reduce the resource intensity of engine calibration, motivating investigation into the development of these methods. The objective of this work was to quantify the sensitivity of GOA performance to the algorithm search parameter values, in a case study of engine calibration. A GOA was used to calibrate four combustion system control parameters for a direct-injection gasoline engine at a single operating condition, with an optimization goal to minimize brake-specific fuel consumption (BSFC) for a specified engine-out NOx concentration limit. The calibration process was repeated for two NOx limit values and a wide range of values for five GOA search parameters, including the number of genes, mutation rate, and convergence criteria. Results indicated GOA performance is very sensitive to algorithm search parameter values, with converged calibrations yielding BSFC values from 1 to 14% higher than the global minimum value and the number of iterations required to converge ranging from 10 to 3000. Broadly, GOA performance sensitivity was found to increase as the NOx limit was decreased from 4500 to 1000 ppm. GOA performance was the most sensitive to the number of genes and the gene mutation rate, whereas sensitivity to convergence criteria values was minimal. Identification of one set of algorithm search parameter values which universally maximized GOA performance was not possible as ideal values depended strongly on engine behavior, NOx limit, and the maximum level of error acceptable to the user.

References

1.
Atkinson
,
C.
,
2014
, “
Fuel Efficiency Optimization Using Rapid Transient Engine Calibration
,”
SAE Technical Paper
2014-01-2359.
2.
Moreno
,
J.
,
Stenlaas
,
C.
, and
and Tunestal
,
O.
,
2017
, “
Investigation of Small Pilot Combustion in a Heavy-Duty Diesel Engine
,”
SAE Int. J. Engines
,
10
(
3
), pp.
1193
1203
.
3.
Yao
,
M.
,
Wang
,
H.
,
Zheng
,
Z.
, and
Yue
,
Y.
,
2009
, “
Experimental Study of Multiple Injections and Coupling Effects of Multi-injection and EGR in a HD Diesel Engine
,”
SAE Technical Paper
2009-01-2807, p.
4970
.
4.
Daniel
,
R.
,
Wang
,
C.
,
Xu
,
H.
, and
Tian
,
G.
,
2012
, “
Split-Injection Strategies Under Full-Load Using DMF, a New Biofuel Candidate, Compared to Ethanol in a GDI Engine
,”
SAE Technical Paper
2012-01-0403.
5.
Yang
,
J.
, and
Anderson
,
R. W.
,
1998
, “
Fuel Injection Strategies to Increase Full-Load Torque Output of a Direct-Injection SI Engine
,”
SAE Tech. Pap.
6.
Singh
,
R.
,
Burch
,
T.
,
Lavoie
,
G.
,
Wooldridge
,
M.
, and
Fatouraie
,
M.
,
2017
, “
Effects of Fuel Injection Events of Ethanol and Gasoline Blends on Boosted Direct-Injection Engine Performance
,”
SAE Technical Paper
2017-01-2238.
7.
Cheng
,
X.
,
Chen
,
L.
,
Yan
,
F.
,
Hong
,
G.
,
Yin
,
Y.
, and
Liu
,
H.
,
2013
, “
Investigations of Split Injection Strategies for the Improvement of Combustion and Soot Emissions Characteristics Based on the Two-Color Method in a Heavy-Duty Diesel Engine
,”
SAE Technical Paper
2013-01-2523.
8.
Alonso
,
J. M.
,
Alvarruiz
,
F.
,
Desantes
,
J. M.
,
Hernández
,
L.
,
Hernández
,
V.
, and
Moltó
,
G.
,
2007
, “
Combining Neural Networks and Genetic Algorithms to Predict and Reduce Diesel Engine Emissions
,”
IEEE Trans. Evol. Comput.
,
11
(
1
), pp.
46
55
.
9.
Millo
,
F.
,
Arya
,
P.
, and
Mallamo
,
F.
,
2018
, “
Optimization of Automotive Diesel Engine Calibration Using Genetic Algorithm Techniques
,”
Energy
,
158
, pp.
807
819
.
10.
Moiz
,
A. A.
,
Pal
,
P.
,
Probst
,
D.
,
Pei
,
Y.
,
Zhang
,
Y.
,
Som
,
S.
, and
Kodavasal
,
J.
,
2018
, “
A Machine Learning-Genetic Algorithm (ML-GA) Approach for Rapid Optimization Using High-Performance Computing
,”
SAE Int. J. Commer. Veh.
,
11
(
5
), pp.
291
306
.
11.
Mohan
,
B.
,
Tang
,
M.
,
Badra
,
J.
,
Pei
,
Y.
, and
Traver
,
M.
,
2021
, “
Machine Learning and Response Surface-Based Numerical Optimization of the Combustion System for a Heavy-Duty Gasoline Compression Ignition Engine
,” SAE Technical Paper 2021-01-0190, pp.
1
14
.
12.
Badra
,
J. A.
,
Khaled
,
F.
,
Tang
,
M.
,
Pei
,
Y.
,
Kodavasal
,
J.
,
Pal
,
P.
,
Owoyele
,
O.
,
Fuetterer
,
C.
,
Mattia
,
B.
, and
Aamir
,
F.
,
2021
, “
Engine Combustion System Optimization Using Computational Fluid Dynamics and Machine Learning: A Methodological Approach
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
022306
.
13.
Zubel
,
M.
,
Ottenwälder
,
T.
,
Heuser
,
B.
, and
Pischinger
,
S.
,
2021
, “
Combustion System Optimization for Dimethyl Ether Using a Genetic Algorithm
,”
Int. J. Engine Res.
,
22
(
1
), pp.
22
38
.
14.
Weber
,
J.
,
Spiekermann
,
P.
, and
Peters
,
N.
,
2005
, “
Model Calibration for Spray Penetration and Mixture Formation in a High Pressure Fuel Spray Using a Micro-genetic Algorithm and Optical Data
,”
SAE Tech. Pap.
,
114
, pp.
1417
1443
.
15.
Zhao
,
J.
, and
Xu
,
M.
,
2013
, “
Fuel Economy Optimization of an Atkinson Cycle Engine Using Genetic Algorithm
,”
Appl. Energy
,
105
, pp.
335
348
.
16.
Kesgin
,
U.
,
2004
, “
Genetic Algorithm and Artificial Neural Network for Engine Optimisation of Efficiency and NOx Emission
,”
Fuel
,
83
(
7–8
), pp.
885
895
.
17.
Vossoughi
,
G. R.
, and
Rezazadeh
,
S.
,
2005
, “
Optimization of the Calibration for an Internal Combustion Engine Management System Using Multi-Objective Genetic Algorithms
,”
Proceedings of the IEEE Congress on Evolutionary Computation
,
Edinburgh, UK
,
Sept. 2–5
, pp.
1254
1261
.
18.
Omran
,
R.
,
Younes
,
R.
,
Champoussin
,
J. C.
,
Fedeli
,
D.
,
Masson
,
F.
, and
Guerrassi
,
N.
,
2007
, “
Genetic Algorithm for Dynamic Calibration of Engine’s Actuators
,”
SAE Technical Paper
2007-01-1079.
19.
Senff
,
F.
,
Ruße
,
P.
, and
Schlegl
,
T.
,
2005
, “
Genetic Algorithm-Based On-line Optimization of a Speed Controller for a Combustion Engine
,”
SAE Technical Paper
2005-01-0039.
20.
Wu
,
M. H.
,
Lin
,
W.
, and
Duan
,
S. Y.
,
2006
, “
Developing a Neural Network and Real Genetic Algorithm Combined Tool for an Engine Test Bed
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
220
(
12
), pp.
1737
1753
.
21.
Thiel
,
M. P.
,
Klingbeil
,
A. E.
, and
Reitz
,
R. D.
,
2002
, “
Experimental Optimization of a Heavy-Duty Diesel Engine Using Automated Genetic Algorithms
,”
SAE Technical Paper
2002-01-0960.
22.
Wu
,
M. H.
,
Lin
,
W.
, and
Duan
,
S. Y.
,
2008
, “
Investigation of a Multi-objective Optimization Tool for Engine Calibration
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
222
(
2
), pp.
235
249
.
23.
Singh
,
R.
,
Mansfield
,
A.
, and
Wooldridge
,
M.
,
2018
, “
Automated Engine Calibration Optimization Using Online Extremum Seeking
,”
Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
Nov. 9–15
.
24.
Singh
,
R.
,
Han
,
T.
,
Fatouraie
,
M.
,
Mansfield
,
A.
,
Wooldridge
,
M.
, and
Boehman
,
A.
,
2019
, “
Influence of Fuel Injection Strategies on Efficiency and Particulate Emissions of Gasoline and Ethanol Blends in a Turbocharged Multi-Cylinder Direct Injection Engine
,”
Int. J. Engine Res.
,
22
(
1
), pp.
1
13
.
25.
Chipperfield
,
A.
,
Fleming
,
P.
,
Pohlheim
,
H.
, and
Fonseca
,
C.
,
Genetic Algorithm Toolbox User’s Guide 1.2
,
Sheffield, UK
.
26.
Han
,
T.
,
Singh
,
R.
,
Lavoie
,
G.
,
Wooldridge
,
M.
, and
Boehman
,
A.
,
2020
, “
Multiple Injection for Improving Knock, Gaseous and Particulate Matter Emissions in Direct Injection SI Engines
,”
Appl. Energy
,
262
, p.
114578
.
You do not currently have access to this content.