Abstract

A tri-generation plant producing power, heat, and refrigeration has been designed and analyzed. Using solar energy as input. The power side of the plant uses supercritical carbon dioxide (sCO2) recompression cycle. The refrigeration side includes an aqueous lithium bromide absorption system. Thermal energy has been extracted from many places in the plant for heating purposes. A detailed thermodynamics model has been developed to determine performance of the plant for many different conditions. Thermal efficiency, energy effectiveness, and exergetic efficiency of the system has been calculated for different operating conditions. It turns out that the pressure ratio of the recombination cycle and effectiveness of the energy exchanger for transferring energy from the power side to the refrigeration side play important roles.

References

1.
Administration, U.E.I.
,
2011
,
Annual Energy Outlook 2011: With Projections to 2035
,
Government Printing Office
.
2.
Al-Sulaiman
,
F. A.
,
Hamdullahpur
,
F.
, and
Dincer
,
I.
,
2011
, “
Trigeneration: A Comprehensive Review Based on Prime Movers
,”
Int. J. Energy Res.
,
35
(
3
), pp.
233
258
.
3.
Darwish
,
M.
,
Al Awadhi
,
F. M.
, and
Amer
,
A. O. B.
,
2010
, “
Combining the Nuclear Power Plant Steam Cycle With Gas Turbines
,”
Energy
,
35
(
12
), pp.
4562
4571
.
4.
Dunbar
,
W. R.
,
Lior
,
N.
, and
Gaggioli
,
R. A.
,
1991
, “
Combining Fuel Cells With Fuel-Fired Power Plants for Improved Exergy Efficiency
,”
Energy
,
16
(
10
), pp.
1259
1274
.
5.
Mecheri
,
M.
, and
Le Moullec
,
Y.
,
2016
, “
Supercritical CO2 Brayton Cycles for Coal-Fired Power Plants
,”
Energy
,
103
, pp.
758
771
.
6.
Deshmukh
,
A.
, and
Kapat
,
J.
,
2020
, “
Pinch Point Analysis of Air Cooler in Supercritical Carbon Dioxide Brayton Cycle Operating Over Ambient Temperature Range
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p. 051204.
7.
Vesely
,
L.
,
Manikantachari
,
K. R. V.
,
Vasu
,
V.
,
Kapat
,
J.
,
Dostal
,
V.
, and
Martin
,
S.
,
2019
, “
Effect of Impurities on Compressor and Cooler in Supercritical CO2 Cycles
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p. 012003.
8.
Black
,
J.
,
Doug Straub
,
D.
,
Robey
,
E.
,
Yip
,
J.
,
Ramesh
,
S.
,
Roy
,
A.
, and
Searle
,
M.
,
2020
, “
Measurement of Convective Heat Transfer Coefficients With Supercritical CO2 Using the Wilson-Plot Technique
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070901
.
9.
Hernández-Santoyo
,
J.
, and
Sánchez-Cifuentes
,
A.
,
2003
, “
Trigeneration: An Alternative for Energy Savings
,”
Appl. Energy
,
76
(
1–3
), pp.
219
227
.
10.
Plura
,
S.
,
Kren
,
C.
, and
Schweigler
,
C.
,
2006
, “
Efficient
and
Flexible Tri-Generation With Two-Stage Absorption Chiller
,”
ASME International Mechanical Engineering Congress and Exposition. Advanced Energy Systems
,
Chicago, IL
,
Nov. 5–10
, ASME, pp.
189
197
.
11.
Anvari
,
S.
,
Taghavifar
,
H.
,
Khoshbakhti Saray
,
R.
,
Khalilarya
,
S.
, and
Jafarmadar
,
S.
,
2015
, “
Implementation of ANN on CCHP System to Predict Trigeneration Performance With Consideration of Various Operative Factors
,”
Energy Convers. Manage.
,
101
, pp.
503
514
.
12.
Deng
,
J.
,
Wang
,
R.
, and
Han
,
G.
,
2011
, “
A Review of Thermally Activated Cooling Technologies for Combined Cooling, Heating and Power Systems
,”
Prog. Energy Combust. Sci.
,
37
(
2
), pp.
172
203
.
13.
Khaliq
,
A.
,
2009
, “
Exergy Analysis of Gas Turbine Trigeneration System for Combined Production of Power Heat and Refrigeration
,”
Int. J. Refrig.
,
32
(
3
), pp.
534
545
.
14.
Marques
,
R. P.
,
Hackon
,
D.
,
Tessarollo
,
A.
, and
Parise
,
J. A. R.
,
2010
, “
Thermodynamic Analysis of Tri-Generation Systems Taking Into Account Refrigeration, Heating and Electricity Load Demands
,”
Energy Build.
,
42
(
12
), pp.
2323
2330
.
15.
Salehzadeh
,
A.
,
Saray
,
R. K.
, and
JalaliVahid
,
D.
,
2013
, “
Investigating the Effect of Several Thermodynamic Parameters on Exergy Destruction in Components of a Tri-Generation Cycle
,”
Energy
,
52
, pp.
96
109
.
16.
López Vega
,
A.
,
Kowalski
,
G. J.
,
Rubio-Maya
,
C.
, and
Pacheco Ibarra
,
J. J.
,
2017
, “
Modelling and Validation of a Hybrid Trigeneration/Photovoltaic System Installed in a Shopping Mall Complex
,”
ASME International Mechanical Engineering Congress and Exposition. Volume 6: Energy
,
Tampa, FL
,
Nov. 3–9
, ASME, p.
V006T08A019
.
17.
Badami
,
M.
,
Portoraro
,
A.
, and
Savarese
,
D.
,
2015
, “
Energetic Assessment of a Local District Heating Network With a Small-Scale Trigeneration Plant: Comparison of Different Performance Indices
,”
ASME International Mechanical Engineering Congress and Exposition. Volume 6B: Energy
,
Houston, TX
,
Nov. 13–19
, ASME, p.
V06BT07A017
.
18.
Badami
,
M.
, and
Portoraro
,
A.
,
2012
, “
Energetic Operational Assessment of Two Small-Scale Trigeneration Plants
,”
ASME International Mechanical Engineering Congress and Exposition. Volume 6: Energy, Parts A and B
,
Houston, TX
,
Nov. 9–15
, ASME, pp.
409
415
.
19.
Al-Sulaiman
,
F. A.
,
Dincer
,
I.
, and
Hamdullahpur
,
F.
,
2010
, “
Exergy Analysis of an Integrated Solid Oxide Fuel Cell and Organic Rankine Cycle for Cooling, Heating and Power Production
,”
J. Power Sources
,
195
(
8
), pp.
2346
2354
.
20.
Chitsaz
,
A.
,
Mahmoudi
,
S. M. S.
, and
Rosen
,
M. A.
,
2015
, “
Greenhouse Gas Emission and Exergy Analyses of an Integrated Trigeneration System Driven by a Solid Oxide Fuel Cell
,”
Appl. Therm. Eng.
,
86
, pp.
81
90
.
21.
Ozcan
,
H.
, and
Dincer
,
I.
,
2015
, “
Performance Evaluation of an SOFC Based Trigeneration System Using Various Gaseous Fuels From Biomass Gasification
,”
Int. J. Hydrogen Energy
,
40
(
24
), pp.
7798
7807
.
22.
Sadeghi
,
M.
,
Chitsaz
,
A.
,
Mahmoudi
,
S. M. S.
, and
Rosen
,
M. A.
,
2015
, “
Thermoeconomic Optimization Using an Evolutionary Algorithm of a Trigeneration System Driven by a Solid Oxide Fuel Cell
,”
Energy
,
89
, pp.
191
204
.
23.
Tippawan
,
P.
,
Arpornwichanop
,
A.
, and
Dincer
,
I.
,
2015
, “
Energy and Exergy Analyses of an Ethanol-Fueled Solid Oxide Fuel Cell for a Trigeneration System
,”
Energy
,
87
, pp.
228
239
.
24.
Tse
,
L. K. C.
,
Wilkins
,
S.
,
McGlashan
,
N.
,
Urban
,
B.
, and
Martinez-Botas
,
R.
,
2011
, “
Solid Oxide Fuel Cell/Gas Turbine Trigeneration System for Marine Applications
,”
J. Power Sources
,
196
(
6
), pp.
3149
3162
.
25.
Karvountzi
,
G. C.
,
Price
,
C. M.
, and
Duby
,
P. F.
,
2004
, “
Comparison of Molten Carbonate and Solid Oxide Fuel Cells for Integration in a Hybrid System for Cogeneration or Tri-Generation
,”
ASME International Mechanical Engineering Congress and Exposition. Advanced Energy Systems
,
Anaheim, CA
,
Nov. 13–19
, ASME, pp.
139
150
.
26.
Ranjbar
,
F.
,
Chitsaz
,
A.
,
Mahmoudi
,
S. M. S.
, and
Rosen
,
M. A.
,
2014
, “
Energy and Exergy Assessments of a Novel Trigeneration System Based on a Solid Oxide Fuel Cell
,”
Energy Convers. Manage.
,
87
, pp.
318
327
.
27.
Huang
,
Y.
,
2013
, “
A Techno-Economic Assessment of Biomass Fuelled Trigeneration System Integrated With Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
53
(
2
), pp.
325
331
.
28.
Lian
,
Z.
,
Chua
,
K.
, and
Chou
,
S.
,
2010
, “
A Thermoeconomic Analysis of Biomass Energy for Trigeneration
,”
Appl. Energy
,
87
(
1
), pp.
84
95
.
29.
Puig-Arnavat
,
M.
,
Bruno
,
J. C.
, and
Coronas
,
A.
,
2014
, “
Modeling of Trigeneration Configurations Based on Biomass Gasification and Comparison of Performance
,”
Appl. Energy
,
114
, pp.
845
856
.
30.
Rentizelas
,
A.
,
Tatsiopoulos
,
I.
, and
Tolis
,
A.
,
2009
, “
An Optimization Model for Multi-Biomass Tri-Generation Energy Supply
,”
Biomass Bioenergy
,
33
(
2
), pp.
223
233
.
31.
Uris
,
M.
,
Linares
,
J. I.
, and
Arenas
,
E.
,
2015
, “
Size Optimization of a Biomass-Fired Cogeneration Plant CHP/CCHP (Combined Heat and Power/Combined Heat, Cooling and Power) Based on Organic Rankine Cycle for a District Network in Spain
,”
Energy
,
88
, pp.
935
945
.
32.
Al-Sulaiman
,
F. A.
,
Dincer
,
I.
, and
Hamdullahpur
,
F.
,
2012
, “
Energy and Exergy Analyses of a Biomass Trigeneration System Using an Organic Rankine Cycle
,”
Energy
,
45
(
1
), pp.
975
985
.
33.
Baghernejad
,
A.
,
Yaghoubi
,
M.
, and
Jafarpur
,
K.
,
2016
, “
Exergoeconomic Optimization and Environmental Analysis of a Novel Solar-Trigeneration System for Heating, Cooling and Power Production Purpose
,”
Sol. Energy
,
134
, pp.
165
179
.
34.
Bamisile
,
O.
,
Huang
,
Q.
,
Anane
,
P. O. K.
, and
Dagbasi
,
M.
,
2019
, “
Performance Analyses of a Renewable Energy Powered System for Trigeneration
,”
Sustainability
,
11
(
21
), p.
6006
.
35.
Buonomano
,
A.
,
Calise
,
F.
,
Palombo
,
A.
, and
Vicidomini
,
M.
,
2015
, “
Energy and Economic Analysis of Geothermal–Solar Trigeneration Systems: A Case Study for a Hotel Building in Ischia
,”
Appl. Energy
,
138
, pp.
224
241
.
36.
Dabwan
,
Y. N.
, and
Pei
,
G.
,
2020
, “
A Novel Integrated Solar Gas Turbine Trigeneration System for Production of Power, Heat and Cooling: Thermodynamic-Economic-Environmental Analysis
,”
Renewable Energy
,
152
, pp.
925
941
.
37.
Gholizadeh
,
T.
,
Vajdi
,
M.
, and
Rostamzadeh
,
H.
,
2020
, “
A New Trigeneration System for Power, Cooling, and Freshwater Production Driven by a Flash-Binary Geothermal Heat Source
,”
Renewable Energy
,
148
, pp.
31
43
.
38.
Khaliq
,
A.
,
Mokheimer
,
E. M.
, and
Yaqub
,
M.
,
2019
, “
Thermodynamic Investigations on a Novel Solar Powered Trigeneration Energy System
,”
Energy Convers. Manage.
,
188
, pp.
398
413
.
39.
Al-Sulaiman
,
F. A.
,
Dincer
,
I.
, and
Hamdullahpur
,
F.
,
2011
, “
Exergy Modeling of a New Solar Driven Trigeneration System
,”
Sol. Energy
,
85
(
9
), pp.
2228
2243
.
40.
Hou
,
S.
,
2018
, “
Optimization of a Combined Cooling, Heating and Power System Using CO2 as Main Working Fluid Driven by Gas Turbine Waste Heat
,”
Energy Convers. Manage.
,
178
, pp.
235
249
.
41.
Nami
,
H.
,
Mahmoudi
,
S.
, and
Nemati
,
A.
,
2017
, “
Exergy, Economic and Environmental Impact Assessment and Optimization of a Novel Cogeneration System Including a Gas Turbine, a Supercritical CO2 and an Organic Rankine Cycle (GT-HRSG/SCO2)
,”
Appl. Therm. Eng.
,
110
, pp.
1315
1330
.
42.
Singh
,
H.
, and
Mishra
,
R.
,
2018
, “
Performance Analysis of Solar Parabolic Trough Collectors Driven Combined Supercritical CO2 and Organic Rankine Cycle
,”
Int. J. Eng. Sci. Technol.
,
21
(
3
), pp.
451
464
.
43.
Zhang
,
S.
,
Chen
,
Y.
,
Wu
,
J.
, and
Zhu
,
Z.
,
2018
, “
Thermodynamic Analysis on a Modified Kalina Cycle With Parallel Cogeneration of Power and Refrigeration
,”
Energy Convers. Manage.
,
163
, pp.
1
12
.
44.
Mathkor
,
R. Z.
,
Agnew
,
B.
,
Al-Weshahi
,
M. A.
, and
Latrsh
,
F.
,
2015
, “
Exergetic Analysis of an Integrated Tri-Generation Organic Rankine Cycle
,”
Energies
,
8
(
8
), pp.
8835
8856
.
45.
You
,
D.
, and
Metghalchi
,
H.
,
2021
, “
On the Supercritical Carbon Dioxide Recompression Cycle
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
121701
.
46.
You
,
D.
, and
Metghalchi
,
H.
,
2021
, “
Analysis of Aqueous Lithium Bromide Absorption Refrigeration Systems
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
012105
.
47.
The American Society of Heating, Refrigerating and Air-Conditioning Engineers ASHRAE
,
2005
, ASHRAE Handbook — Fundamentals (SI).
48.
Somers
,
C.
,
Mortazavi
,
A.
,
Hwang
,
Y.
,
Radermacher
,
R.
,
Rodgers
,
P.
, and
Al-Hashimi
,
S.
,
2011
, “
Modeling Water/Lithium Bromide Absorption Chillers in ASPEN Plus
,”
Appl. Energy
,
88
(
11
), pp.
4197
4205
.
49.
Patek
,
J.
, and
Klomfar
,
J.
,
2006
, “
A Computationally Effective Formulation of the Thermodynamic Properties of LiBr–H2O Solutions From 273 to 500 K Over Full Composition Range
,”
Int. J. Refrig.
,
29
(
4
), pp.
566
578
.
50.
Sharma
,
O.
,
Kaushik
,
S.
, and
Manjunath
,
K.
,
2017
, “
Thermodynamic Analysis and Optimization of a Supercritical CO2 Regenerative Recompression Brayton Cycle Coupled With a Marine Gas Turbine for Shipboard Waste Heat Recovery
,”
Ther. Sci. Eng. Prog.
,
3
, pp.
62
74
.
You do not currently have access to this content.