Abstract

Large eddy simulation (LES) coupling with wind turbine control strategies is newly developed to quantitatively study the layout effects on wind farm performance. The turbine rotor is parameterized with an actuator line method (ALM), and the five-region generator-torque control and the proportional-integral (PI) pitch control are newly introduced to regulate the operation of the wind turbine. First, a dynamic inflow boundary condition is designed to validate the current simulation framework. The validation results show that the simulated power curve agrees well with the real power curve of the wind turbine, and the maximum power error of the simulation only accounts for 5% of the rated power. Then, to study the layout effects, four kinds of wind farm arrangements are designed by varying the alignment method and the turbine spacing. The results show that the staggered arrangement and increasing the stream-wise spacing are beneficial to reduce the velocity deficit. The power comparison results show that the staggered arrangement has obvious advantages among the four cases, and it increases the capacity factor (CF) by 25% and improves the wind farm efficiency by about 50% compared with the aligned arrangement. The present simulation framework can be used to optimize the turbine layout for the potential wind farms.

References

1.
Cevasco
,
D.
,
Koukoura
,
S.
, and
Kolios
,
A. J.
,
2021
, “
Reliability, Availability, Maintainability Data Review for the Identification of Trends in Offshore Wind Energy Applications
,”
Renewable Sustainable Energy Rev.
,
136
, p.
110414
.
2.
Vargas
,
S. A.
,
Esteves
,
G. R. T.
,
Maçaira
,
P. M.
,
Bastos
,
B. Q.
,
Cyrino Oliveira
,
F. L.
, and
Souza
,
R. C.
,
2019
, “
Wind Power Generation: A Review and a Research Agenda
,”
J. Cleaner Prod.
,
218
, pp.
850
870
.
3.
Park
,
J.
, and
Law
,
K. H.
,
2015
, “
Cooperative Wind Turbine Control for Maximizing Wind Farm Power Using Sequential Convex Programming
,”
Energy Convers. Manage.
,
101
, pp.
295
316
.
4.
Gao
,
X.
,
Yang
,
H.
, and
Lu
,
L.
,
2016
, “
Optimization of Wind Turbine Layout Position in a Wind Farm Using a Newly-Developed Two-Dimensional Wake Model
,”
Appl. Energy
,
174
, pp.
192
200
.
5.
De-Prada-Gil
,
M.
,
Alías
,
C. G.
,
Gomis-Bellmunt
,
O.
, and
Sumper
,
A.
,
2015
, “
Maximum Wind Power Plant Generation by Reducing the Wake Effect
,”
Energy Convers. Manage.
,
101
, pp.
73
84
.
6.
Kusiak
,
A.
, and
Song
,
Z.
,
2010
, “
Design of Wind Farm Layout for Maximum Wind Energy Capture
,”
Renewable Energy
,
35
(
3
), pp.
685
694
.
7.
Iungo
,
G. V.
,
2016
, “
Experimental Characterization of Wind Turbine Wakes: Wind Tunnel Tests and Wind LiDAR Measurements
,”
J. Wind Eng. Ind. Aerodyn.
,
149
, pp.
35
39
.
8.
Schümann
,
H.
,
Pierella
,
F.
, and
Sætran
,
L.
,
2013
, “
Experimental Investigation of Wind Turbine Wakes in the Wind Tunnel
,”
Energy Procedia
,
35
, pp.
285
296
.
9.
Tian
,
W.
,
Ozbay
,
A.
, and
Hu
,
H.
,
2018
, “
An Experimental Investigation on the Aeromechanics and Wake Interferences of Wind Turbines Sited Over Complex Terrain
,”
J. Wind Eng. Ind. Aerodyn.
,
172
, pp.
379
394
.
10.
Churchfield
,
M. J.
,
Lee
,
S.
,
Moriarty
,
P. J.
,
Martinez
,
L. A.
,
Leonardi
,
S.
,
Vijayakumar
,
G.
, and
Brasseur
,
J. G.
,
2012
, “
A Large-EDddy Simulation of Wind-Plant Aerodynamics
,”
AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Nashville, TN
,
January
.
11.
Porté-Agel
,
F.
,
Wu
,
Y.
,
Lu
,
H.
, and
Conzemius
,
R. J.
,
2011
, “
Large-Eddy Simulation of Atmospheric Boundary Layer Flow Through Wind Turbines and Wind Farms
,”
J. Wind Eng. Ind. Aerodyn.
,
99
(
4
), pp.
154
168
.
12.
Porté-Agel
,
F.
,
Lu
,
H.
, and
Wu
,
Y.
,
2014
, “
Interaction Between Large Wind Farms and the Atmospheric Boundary Layer
,”
Procedia IUTAM
,
10
, pp.
307
318
.
13.
Dhunny
,
A. Z.
,
Lollchund
,
M. R.
, and
Rughooputh
,
S. D. D. V.
,
2017
, “
Wind Energy Evaluation for a Highly Complex Terrain Using Computational Fluid Dynamics (CFD)
,”
Renewable Energy
,
101
, pp.
1
9
.
14.
Zhang
,
M.
, and
Liu
,
M.
,
2014
, “
Investigation of the Wind Resource Assessment Over 2D Continuous Rolling Hills Due to Tropical Cyclones in the Coastal Region of Southeastern China
,”
Energies
,
7
(
2
), pp.
913
933
.
15.
Stevens
,
R. J. A. M.
,
Gayme
,
D. F.
, and
Meneveau
,
C.
,
2014
, “
Large Eddy Simulation Studies of the Effects of Alignment and Wind Farm Length
,”
J. Renewable Sustainable Energy
,
2
, p.
16115
.
16.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2019
, “
CFD Analysis of Dynamic Stall on Vertical Axis Wind Turbines Using Scale-Adaptive Simulation (SAS): Comparison Against URANS and Hybrid RANS/LES
,”
Energy Convers. Manage.
,
196
, pp.
1282
1298
.
17.
Sanderse
,
B.
,
Pijl
,
S. P.
, and
Koren
,
B.
,
2011
, “
Review of Computational Fluid Dynamics for Wind Turbine Wake Aerodynamics
,”
Wind Energy
,
14
(
7
), pp.
799
819
.
18.
Luo
,
K.
,
Zhang
,
S.
,
Gao
,
Z.
,
Wang
,
J.
,
Zhang
,
L.
,
Yuan
,
R.
,
Fan
,
J.
, and
Cen
,
K.
,
2015
, “
Large-Eddy Simulation and Wind-Tunnel Measurement of Aerodynamics and Aeroacoustics of a Horizontal-Axis Wind Turbine
,”
Renewable Energy
,
77
, pp.
351
362
.
19.
Sarlak
,
H.
,
Meneveau
,
C.
, and
Sørensen
,
J. N.
,
2015
, “
Role of Subgrid-Scale Modeling in Large Eddy Simulation of Wind Turbine Wake Interactions
,”
Renewable Energy
,
77
, pp.
386
399
.
20.
Calaf
,
M.
,
Meneveau
,
C.
, and
Meyers
,
J.
,
2010
, “
Large Eddy Simulation Study of Fully Developed Wind-Turbine Array Boundary Layers
,”
Phys. Fluids
,
22
(
1
), p.
46
.
21.
Meyers
,
J.
, and
Meneveau
,
C.
,
2012
, “
Optimal Turbine Spacing in Fully Developed Wind Farm Boundary Layers
,”
Wind Energy
,
15
(
2
), pp.
305
317
.
22.
Meng
,
H.
,
Li
,
L.
, and
Zhang
,
J.
,
2020
, “
A Preliminary Numerical Study of the Wake Effects on the Fatigue Load for Wind Farm Based on Elastic Actuator Line Model
,”
Renewable Energy
,
162
, pp.
788
801
.
23.
Hoang
,
P. H.
,
Maeda
,
T.
,
Kamada
,
Y.
,
Tada
,
T.
,
Hanamura
,
M.
,
Goshima
,
N.
,
Iwai
,
K.
,
Fujiwara
,
A.
, and
Hosomi
,
M.
,
2022
, “
Effect of Icing Airfoil on Aerodynamic Performance of Horizontal Axis Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), pp.
011303
.
24.
Onel
,
H. C.
, and
Tuncer
,
I. H.
,
2021
, “
Investigation of Wind Turbine Wakes and Wake Recovery in a Tandem Configuration Using Actuator Line Model With LES
,”
Comput. Fluids
,
220
, p.
104872
.
25.
AlSam
,
A.
,
Szasz
,
R.
, and
Revstedt
,
J.
,
2017
, “
Wind–Wave Interaction Effects on a Wind Farm Power Production
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051213
.
26.
Arabgolarcheh
,
A.
,
Benini
,
E.
, and
Anbarsooz
,
M.
,
2021
, “
Development of an Actuator Line Model for Simulation
,”
ASME Power Conference
,
Online
,
July 20–22
, American Society of Mechanical Engineers, 85109, p. V001T09A001.
27.
Wu
,
Y.
, and
Porté-Agel
,
F.
,
2013
, “
Simulation of Turbulent Flow Inside and Above Wind Farms: Model Validation and Layout Effects
,”
Boundary-Layer Meteorol.
,
146
(
2
), pp.
181
205
.
28.
Archer
,
C. L.
,
Mirzaeisefat
,
S.
, and
Lee
,
S.
,
2013
, “
Quantifying the Sensitivity of Wind Farm Performance to Array Layout Options Using Large-Eddy Simulation
,”
Geophys. Res. Lett.
,
40
(
18
), pp.
4963
4970
.
29.
Sharma
,
V.
,
Cortina
,
G.
,
Margairaz
,
F.
,
Parlange
,
M. B.
, and
Calaf
,
M.
,
2018
, “
Evolution of Flow Characteristics Through Finite-Sized Wind Farms and Influence of Turbine Arrangement
,”
Renewable Energy
,
115
, pp.
1196
1208
.
30.
Dörenkämper
,
M.
,
Witha
,
B.
,
Steinfeld
,
G.
,
Heinemann
,
D.
, and
Kühn
,
M.
,
2015
, “
The Impact of Stable Atmospheric Boundary Layers on Wind-Turbine Wakes Within Offshore Wind Farms
,”
J. Wind Eng. Ind. Aerodyn.
,
144
, pp.
146
153
.
31.
Ghaisas
,
N. S.
,
Archer
,
C. L.
,
Xie
,
S.
,
Wu
,
S.
, and
Maguire
,
E.
,
2017
, “
Evaluation of Layout and Atmospheric Stability Effects in Wind Farms Using Large-Eddy Simulation
,”
Wind Energy
,
20
(
7
), pp.
1227
1240
.
32.
Al Sam
,
A.
,
Szasz
,
R.
, and
Revstedt
,
J.
,
2017
, “
An Investigation of Wind Farm Power Production for Various Atmospheric Boundary Layer Heights
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051216
.
33.
Mohammed
,
A. A.
,
Sahin
,
A. Z.
, and
Ouakad
,
H. M.
,
2020
, “
Numerical Investigation of a Vertical Axis Wind Turbine Performance Characterization Using New Variable Pitch Control Scheme
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
031302
.
34.
Wang
,
Q.
,
Luo
,
K.
,
Yuan
,
R.
,
Wang
,
S.
,
Fan
,
J.
, and
Cen
,
K.
,
2020
, “
A Multiscale Numerical Framework Coupled With Control Strategies for Simulating a Wind Farm in Complex Terrain
,”
Energy
,
203
, p.
117913
.
35.
Luo
,
K.
,
Yuan
,
R.
,
Dong
,
X.
,
Wang
,
J.
,
Zhang
,
S.
,
Fan
,
J.
,
Ni
,
M.
, and
Cen
,
K.
,
2017
, “
Large-Eddy Simulation and Experimental Study on the Turbulent Wake Flow Characteristics of a Two-Bladed Wind Turbine
,”
Sci. China Technol. Sci.
,
60
(
12
), pp.
1861
1869
.
36.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations: I. The Basic Experiment
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.
37.
Moeng
,
C. H.
,
1984
, “
A Large-Eddy-Simulation Model for the Study of Planetary Boundary-Layer Turbulence
,”
J. Atmos. Sci.
,
41
(
13
), pp.
2052
2062
.
38.
So̸rensen
,
J. N.
, and
Shen
,
W. Z.
,
2002
, “
Numerical Modeling of Wind Turbine Wakes
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
393
399
.
39.
Martinez
,
L.
,
Leonardi
,
S.
,
Churchfield
,
M.
, and
Moriarty
,
P.
,
2012
, “
A Comparison of Actuator Disk and Actuator Line Wind Turbine Models and Best Practices for Their Use
,”
AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Nashville, TN
.
40.
Troldborg
,
N.
,
Sorensen
,
J. N.
, and
Mikkelsen
,
R.
,
2010
, “
Numerical Simulations of Wake Characteristics of a Wind Turbine in Uniform Inflow
,”
Wind Energy
,
13
(
1
), pp.
86
99
.
41.
Jonkman
,
J.
,
Butterfield
,
S.
,
Musial
,
W.
, and
Scott
,
G.
,
2009
,
Definition of a 5-MW Reference Wind Turbine for Offshore System Development (No. NREL/TP-500-38060)
,
National Renewable Energy Laboratory (NREL)
,
Golden, CO
.
42.
Quallen
,
S.
, and
Xing
,
T.
,
2016
, “
CFD Simulation of a Floating Offshore Wind Turbine System Using a Variable-Speed Generator-Torque Controller
,”
Renewable Energy
,
97
, pp.
230
242
.
43.
Yuan
,
R.
,
Ji
,
W.
,
Luo
,
K.
,
Wang
,
J.
,
Zhang
,
S.
,
Wang
,
Q.
,
Fan
,
J.
,
Ni
,
M.
, and
Cen
,
K.
,
2017
, “
Coupled Wind Farm Parameterization With a Mesoscale Model for Simulations of an Onshore Wind Farm
,”
Appl. Energy
,
206
, pp.
113
125
.
44.
Fung
,
J. C. H.
,
Hunt
,
J. C. R.
,
Malik
,
N. A.
, and
Perkins
,
R. J.
,
1992
, “
Kinematic Simulation of Homogeneous Turbulence by Unsteady Random Fourier Modes
,”
J. Fluid Mech.
,
236
, pp.
281
318
.
45.
Meyer
,
D. W.
, and
Eggersdorfer
,
M. L.
,
2014
, “
Simulating Particle Collisions in Homogeneous Turbulence With Kinematic Simulation – A Validation Study
,”
Colloid Surf. A: Physicochem. Eng. Asp.
,
454
, pp.
57
64
.
46.
Lauris
,
D.
, and
Alain
,
P.
,
2009
, “
Inertial Particle Collisions in Turbulent Synthetic Flows: Quantifying the Sling Effect
,”
Phys. Rev. E
,
80
(
6
), p.
066312
.
47.
Jowder
,
F. A. L.
,
2009
, “
Wind Power Analysis and Site Matching of Wind Turbine Generators in Kingdom of Bahrain
,”
Appl. Energy
,
86
(
4
), pp.
538
545
.
48.
Tao
,
P.
,
2015
,
Numerical Simulation of Atmospheric Boundary Layer Wind Field by OpenFOAM
,
Chongqing University
,
Chongqing, China
.
You do not currently have access to this content.