Abstract

During the process of oil production and transportation, oil–water two-phase flow is a common occurrence. Well completion optimization and production design are greatly affected by the prediction accuracy of two-phase flow characteristics. In this paper, a novel model is proposed to predict the influence of interface shape on stratified flow. Dynamic contact angle theory and minimum energy method are introduced to solve the momentum equations with a curved interface and dispersed phase holdup in the lower water layer or the upper oil layer, respectively. When the Eotvos number is lower than ten, the interface shape changes from a flat surface to a curved surface, and the flow area of the upper water layer and the lower oil layer will increase and decrease, respectively. Results show that the dynamic contact angle and pressure gradient are greatly affected by oil superficial velocity, oil viscosity, and pipe diameter. By comparing the prediction with available experiment results, the validity of the model is evaluated. Results show that the novel model has an overall good prediction performance for the pressure gradient, with an average percentage error of 13.12%. While the average percentage error of Liu's model and two-fluid model are 22.89% and 34.98%, respectively. The novel model is a unified model that could be used to solve the problem with a curved/flat interface. It will also promote the oil well production design and horizontal well completion optimization.

References

1.
Shi
,
H.
,
Holmes
,
J. A.
,
Durlofsky
,
L. J.
,
Aziz
,
K.
,
Diaz
,
L.
,
Alkaya
,
B.
, and
Oddie
,
G.
,
2005
, “
Drift-Flux Modeling of Two-Phase Flow in Wellbores
,”
SPE J.
,
10
(
1
), pp.
24
33
.
2.
Al-Wahaibi
,
T.
,
2012
, “
Pressure Gradient Correlation for Oil–Water Separated Flow in Horizontal Pipes
,”
Exp. Therm. Fluid. Sci.
,
42
, pp.
196
203
.
3.
Izwan Ismail
,
A. S.
,
Ismail
,
I.
,
Zoveidavianpoor
,
M.
,
Mohsin
,
R.
,
Piroozian
,
A.
,
Misnan
,
M. S.
, and
Sariman
,
M. Z.
,
2015
, “
Experimental Investigation of Oil–Water Two-Phase Flow in Horizontal Pipes: Pressure Losses, Liquid Holdup and Flow Patterns
,”
J. Pet. Sci. Eng.
,
127
, pp.
409
420
.
4.
Zhang
,
D.
,
Zhang
,
H.
,
Rui
,
J.
,
Pan
,
Y.
,
Liu
,
X.
, and
Shang
,
Z.
,
2020
, “
Prediction Model for the Transition Between Oil–Water Two-Phase Separation and Dispersed Flows in Horizontal and Inclined Pipes
,”
J. Pet. Sci. Eng.
,
192
, p.
107161
.
5.
Kabir
,
C. S.
, and
Hasan
,
A. R.
,
1994
, “
Two-Phase Flow Correlations as Applied to Pumping Well Testing
,”
ASME J. Energy Resour. Technol.
,
116
(
2
), pp.
121
128
.
6.
Zeng
,
Q.
,
Wang
,
Z.
,
Wang
,
X.
,
Wei
,
J.
,
Zhang
,
Q.
, and
Yang
,
G.
,
2015
, “
A Novel Autonomous Inflow Control Device Design and Its Performance Prediction
,”
J. Pet. Sci. Eng.
,
126
, pp.
35
47
.
7.
Zeng
,
Q.
,
Wang
,
Z.
,
Wang
,
X.
,
Zhao
,
Y.
, and
Guo
,
X.
,
2016
, “
A Novel Oil–Water Separator Design and Its Performance Prediction
,”
J. Pet. Sci. Eng.
,
145
, pp.
83
94
.
8.
Zhao
,
L.
,
Zeng
,
Q.
, and
Wang
,
Z.
,
2018
, “
Design and Performance of a Novel Autonomous Inflow Control Device
,”
Energy Fuels
,
32
(
1
), pp.
125
131
.
9.
Wang
,
S.
,
Cheng
,
L.
,
Huang
,
S.
,
Xue
,
Y.
,
Bai
,
M.
,
Wu
,
Y.
,
Jia
,
P.
,
Sun
,
Z.
, and
Wang
,
J.
,
2019
, “
A Semi-Analytical Method for Modeling Two-Phase Flow Behavior in Fractured Carbonate Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072902
.
10.
Shadloo M
,
S.
,
Rahmat
,
A.
,
Karimipour
,
A.
, and
Wongwises
,
S.
,
2020
, “
Estimation of Pressure Drop of Two-Phase Flow in Horizontal Long Pipes Using Artificial Neural Networks
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
112110
.
11.
Wang
,
Z.
,
Zhang
,
Q.
,
Zeng
,
Q.
, and
Wei
,
J.
,
2017
, “
A Unified Model of Oil/Water Two-Phase Flow in the Horizontal Wellbore
,”
SPE J.
,
22
(
01
), pp.
353
364
.
12.
Mohammadi
,
S.
,
Papa
,
M.
,
Pereyra
,
E.
, and
Sarica
,
C.
,
2019
, “
Genetic Algorithm to Select a Set of Closure Relationships in Multiphase Flow Models
,”
J. Pet. Sci. Eng.
,
181
, pp.
106224
.
13.
Coutinho
,
R. P.
,
Waltrich
,
P. J.
,
Williams
,
W. C.
,
Mehdizadeh
,
P.
,
Scott
,
S.
,
Xu
,
J.
, and
Mabrye
,
W.
,
2020
, “
Experimental Characterization of Two-Phase Flow Through Valves Applied to Liquid-Assisted Gas-Lift
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
063007
.
14.
Coutinho
,
R. P.
,
Tornisiello
,
L.
, and
Waltrich
,
P. J.
,
2020
, “
Experimental Investigation of Vertical Downward Two-Phase Flow in Annulus
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
072102
.
15.
Brauner
,
N.
,
Rovinsky
,
J.
, and
Moalem Maron
,
D.
,
1996
, “
Determination of the Interface Curvature in Stratified Two-Phase Systems by Energy Considerations
,”
Int. J. Multiphase Flow
,
22
(
6
), pp.
1167
1185
.
16.
Brauner
,
N.
,
Moalem Maron
,
D.
, and
Rovinsky
,
J.
,
1998
, “
A Two-Fluid Model for Stratified Flows With Curved Interfaces
,”
Int. J. Multiphase Flow
,
24
(
6
), pp.
975
1004
.
17.
Piela
,
K.
,
Delfos
,
R.
,
Ooms
,
G.
,
Westerweel
,
J.
,
Oliemans
,
R. V. A.
, and
Mudde
,
R. F.
,
2006
, “
Experimental Investigation of Phase Inversion in an Oil–Water Flow Through a Horizontal Pipe Loop
,”
Int. J. Multiphase Flow
,
32
(
9
), pp.
1087
1099
.
18.
Xu
,
X.
,
2007
, “
Study on Oil–Water Two-Phase Flow in Horizontal Pipelines
,”
J. Pet. Sci. Eng.
,
59
(
1
), pp.
43
58
.
19.
Atmaca
,
S.
,
Sarica
,
C.
,
Zhang
,
H.-Q.
, and
Al-Sarkhi
,
A. S.
,
2009
, “
Characterization of Oil/Water Flows in Inclined Pipes
,”
SPE Proj. Facil. Constr.
,
4
(
2
), pp.
41
46
.
20.
Vuong
,
D. H.
,
Zhang
,
H.
,
Sarica
,
C.
, and
Li
,
M.
,
2009
, “
Experimental Study on High Viscosity Oil/Water Flow in Horizontal and Vertical Pipes
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Oct. 4–7
, Society of Petroleum Engineers.
21.
Zhang
,
H.
, and
Sarica
,
C.
,
2011
, “
A Model for Wetted-Wall Fraction and Gravity Center of Liquid Film in Gas/Liquid Pipe Flow
,”
SPE J.
,
16
(
3
), pp.
692
697
.
22.
Zhang
,
H.
,
Vuong
,
D. H.
, and
Sarica
,
C.
,
2012
, “
Modeling High-Viscosity Oil/Water Cocurrent Flows in Horizontal and Vertical Pipes
,”
SPE J.
,
17
(
1
), pp.
243
250
.
23.
Tan
,
C.
,
Wu
,
H.
, and
Dong
,
F.
,
2013
, “
Horizontal Oil–Water Two-Phase Flow Measurement With Information Fusion of Conductance Ring Sensor and Cone Meter
,”
Flow Meas. Instrum.
,
34
, pp.
83
90
.
24.
Han
,
Y. F.
,
Zhao
,
A.
,
Zhang
,
H. X.
,
Ren
,
Y. Y.
,
Liu
,
W. X.
, and
Jin
,
N. D.
,
2016
, “
Differential Pressure Method for Measuring Water Holdup of Oil–Water Two-Phase Flow With Low Velocity and High Water-Cut
,”
Exp. Therm. Fluid. Sci.
,
72
, pp.
197
209
.
25.
Lovick
,
J.
, and
Angeli
,
P.
,
2004
, “
Experimental Studies on the Dual Continuous Flow Pattern in Oil–Water Flows
,”
Int. J. Multiphase Flow
,
30
(
2
), pp.
139
157
.
26.
Ballesteros
,
M.
,
Ratkovich
,
N.
, and
Pereyra
,
E.
,
2020
, “
Analysis and Modeling of Liquid Holdup in Low Liquid Loading Two-Phase Flow Using Computational Fluid Dynamics and Experimental Data
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012105
.
27.
Ng
,
T. S.
,
Lawrence
,
C. J.
, and
Hewitt
,
G. F.
,
2001
, “
Interface Shapes for Two-Phase Laminar Stratified Flow in a Circular Pipe
,”
Int. J. Multiphase Flow
,
27
(
7
), pp.
1301
1311
.
28.
Zuber
,
N.
, and
Findlay
,
J. A.
,
1965
, “
Average Volumetric Concentration in Two-Phase Flow Systems
,”
ASME J. Heat Transfer
,
87
(
4
), pp.
453
468
.
29.
Shi
,
H.
,
Holmes
,
J.
,
Durlofsky
,
L.
,
Aziz
,
K.
,
Diaz
,
L.
,
Alkaya
,
B.
, and
Oddie
,
G.
,
2003
, “
Drift-Flux Modeling of Multiphase Flow in Wellbores
,”
SPE Annual Technical Conference and Exhibition
,
Denver, CO
,
Oct. 5–8
.
30.
Liu
,
Y.
,
Zhang
,
H.
,
Wang
,
S.
, and
Wang
,
J.
,
2008
, “
Prediction of Pressure Gradient and Holdup in Small Eötvös Number Liquid-Liquid Segregated Flow
,”
Chin. J. Chem. Eng.
,
16
(
2
), pp.
184
191
.
31.
Sharma
,
A.
,
Al-Sarkhi
,
A.
,
Sarica
,
C.
, and
Zhang
,
H.-Q.
,
2011
, “
Modeling of Oil–Water Flow Using Energy Minimization Concept
,”
Int. J. Multiphase Flow
,
37
(
4
), pp.
326
335
.
32.
Valle
,
A.
, and
Kvandal
,
H. K.
,
1995
, “
Pressure Drop and Dispersion Characteristics of Separated Oil–Water Flow
,”
Proceedings of International Symposium on Two-Phase Flow Modeling and Experimentation
,
Rome, Italy
,
Oct. 9–11
, vol. 1, pp.
583
591
.
33.
Angeli
,
P.
, and
Hewitt
,
G. F.
,
1999
, “
Pressure Gradient in Horizontal Liquid–Liquid Flows
,”
Int. J. Multiphase Flow
,
24
(
7
), pp.
1183
1203
.
34.
Wang
,
X.
,
Peng
,
X.
, and
Wang
,
B.
,
2003
, “
Research Progress of Dynamic Wetting and Dynamic Contact Angle
,”
J. Basic Sci. Eng.
,
11
(
4
), pp.
396
404
.
35.
Chakrabarti
,
D.
,
Das
,
G.
, and
Ray
,
S.
,
2005
, “
Pressure Drop in Liquid-Liquid Two Phase Horizontal Flow: Experiment and Prediction
,”
Chem. Eng. Technol.
,
28
(
9
), pp.
1003
1009
.
36.
Angeli
,
P.
, and
Hewitt
,
G. F.
,
2000
, “
Drop Size Distributions in Horizontal Oil-Water Dispersed Flows
,”
Chem. Eng. Sci.
,
55
(
16
), pp.
3133
3143
.
You do not currently have access to this content.