Abstract

In the present work, the forced-convection heat transfer features of different nanofluids in a circular channel with porous baffles are numerically investigated. Nanofluid flow in the porous area is simulated by the simultaneous use of Darcy-Brinkman-Forchheimer and two-phase mixture models. The flow is considered to be laminar, two-dimensional, steady, axially symmetric, and incompressible. The simulations are conducted in fluent software and by using the finite volume method and SIMPLE algorithm. The influences of various parameters, including Reynolds number, volume fractions of nanoparticles, Darcy number, porous region height, and various nanofluid types on the nanofluid flows and their thermal energy transfer features, are investigated. Results show that porous blocks significantly change the flow characteristics and thermal energy transfer features. For instance, at low Darcy numbers, the permeability of the porous region decreases, and the porous baffles have greater resistance against the nanofluid flow. As a result, the vortex area becomes stronger and taller, and streamlines near obstacles are tighter. However, in high Darcy numbers, due to the high permeability of the porous medium, the flow will be the same as the flow in the channel without barriers, and the porous baffles will not have much influence on the flow. For example, at Darcy number Da = 10−4 the vortex area almost disappears. The growth of conductivity ratio increases the local Nu in the vicinity of the barriers. Properties of the porous medium and nanofluid flow affect the thermal energy transfer rate, and it can be improved by making appropriate changes to these features.

References

1.
Sodagar-Abardeh
,
J.
,
Ebrahimi-Moghadam
,
A.
,
Farzaneh-Gord
,
M.
, and
Norouzi
,
A.
,
2020
, “
Optimizing Chevron Plate Heat Exchangers Based on the Second Law of Thermodynamics and Genetic Algorithm
,”
J. Therm. Anal. Calorim.
,
139
(
6
), pp.
3563
3576
.
2.
Hassan
,
M.
,
Abdel-Hameed
,
H.
, and
Mahmoud
,
O. E.
,
2019
, “
Experimental Investigation of the Effect of Nanofluid on Thermal Energy Storage System Using Clathrate
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042003
.
3.
Sodagar-Abardeh
,
J.
,
Nasery
,
P.
,
Arabkoohsar
,
A.
, and
Farzaneh-Gord
,
M.
,
2020
, “
Numerical Study of Magnetic Field Influence on Three-Dimensional Flow Regime and Combined-Convection Heat Exchange Within Concentric and Eccentric Rotating Cylinders
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
112115
.
4.
Sodagar
,
Hamid
,
Sodagar-Abardeh
,
Javad
,
Shakiba
,
Ali
, and
Niazmand
,
Hamid
,
2021
, “
Numerical Study of Drug Delivery Through the 3D Modeling of Aortic Arch in Presence of a Magnetic Field
,”
Biomech. Model. Mechanobiol.
,
20
(
2
), pp.
787
802
.
5.
Albojamal
,
A.
, and
Vafai
,
K.
,
2020
, “
Analysis of Particle Deposition of Nanofluid Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
,
161
, p.
120227
.
6.
Movahedi
,
H.
,
Vasheghani Farahani
,
M.
, and
Masihi
,
M.
,
2020
, “
Development of a Numerical Model for Single-and Two-Phase Flow Simulation in Perforated Porous Media
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
042901
.
7.
Bayomy
,
A. M.
, and
Saghir
,
M.
,
2017
, “
Experimental Study of Using γ-Al2O3–Water Nanofluid Flow Through Aluminum Foam Heat Sink: Comparison With Numerical Approach
,”
Int. J. Heat Mass Transfer
,
107
, pp.
181
203
.
8.
Habib
,
R.
,
Yadollahi
,
B.
, and
Karimi
,
N.
,
2020
, “
A Pore-Scale Investigation of the Transient Response of Forced Convection in Porous Media to Inlet Ramp Inputs
,”
ASME J. Energy Resour. Technol.
,
142
(
11
), p.
112112
.
9.
Derakhshan
,
S.
, and
Khosravian
,
M.
,
2019
, “
Exergy Optimization of a Novel Combination of a Liquid Air Energy Storage System and a Parabolic Trough Solar Collector Power Plant
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
081901
.
10.
Talesh Bahrami
,
H. R.
,
Aminian
,
E.
, and
Saffari
,
H.
,
2020
, “
Energy Transfer Enhancement Inside an Annulus Using Gradient Porous Ribs and Nanofluids
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
122102
.
11.
Hwang
,
K. S.
,
Jang
,
S. P.
, and
Choi
,
S. U.
,
2009
, “
Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime
,”
Int. J. Heat Mass Transfer
,
52
(
1–2
), pp.
193
199
.
12.
Anoop
,
K.
,
Sundararajan
,
T.
, and
Das
,
S. K.
,
2009
, “
Effect of Particle Size on the Convective Heat Transfer in Nanofluid in the Developing Region
,”
Int. J. Heat Mass Transfer
,
52
(
9–10
), pp.
2189
2195
.
13.
Lotfi
,
R.
,
Saboohi
,
Y.
, and
Rashidi
,
A.
,
2010
, “
Numerical Study of Forced Convective Heat Transfer of Nanofluids: Comparison of Different Approaches
,”
Int. Commun. Heat Mass Transfer
,
37
(
1
), pp.
74
78
.
14.
Kalteh
,
M.
,
Abbassi
,
A.
,
Saffar-Avval
,
M.
, and
Harting
,
J.
,
2011
, “
Eulerian–Eulerian Two-Phase Numerical Simulation of Nanofluid Laminar Forced Convection in a Microchannel
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
107
116
.
15.
Özerinç
,
S.
,
Yazıcıoğlu
,
A.
, and
Kakaç
,
S.
,
2012
, “
Numerical Analysis of Laminar Forced Convection With Temperature-Dependent Thermal Conductivity of Nanofluids and Thermal Dispersion
,”
Int. J. Therm. Sci.
,
62
, pp.
138
148
.
16.
Hajipour
,
M.
, and
Dehkordi
,
A. M.
,
2012
, “
Analysis of Nanofluid Heat Transfer in Parallel-Plate Vertical Channels Partially Filled With Porous Medium
,”
Int. J. Therm. Sci.
,
55
, pp.
103
113
.
17.
Ghozatloo
,
A.
,
Rashidi
,
A.
, and
Shariaty-Niassar
,
M.
,
2014
, “
Convective Heat Transfer Enhancement of Graphene Nanofluids in Shell and Tube Heat Exchanger
,”
Exp. Therm. Fluid. Sci.
,
53
, pp.
136
141
.
18.
Aghaei
,
A.
,
Sheikhzadeh
,
G. A.
,
Dastmalchi
,
M.
, and
Forozande
,
H.
,
2015
, “
Numerical Investigation of Turbulent Forced-Convective Heat Transfer of Al2O3–Water Nanofluid With Variable Properties in Tube
,”
Ain Shams Eng. J.
,
6
(
2
), pp.
577
585
.
19.
Xu
,
H.
,
Gong
,
L.
,
Huang
,
S.
, and
Xu
,
M.
,
2015
, “
Flow and Heat Transfer Characteristics of Nanofluid Flowing Through Metal Foams
,”
Int. J. Heat Mass Transfer
,
83
, pp.
399
407
.
20.
Ebrahimnia-Bajestan
,
E.
,
Charjouei Moghadam
,
M.
,
Niazmand
,
H.
,
Daungthongsuk
,
W.
, and
Wongwises
,
S.
,
2016
, “
Experimental and Numerical Investigation of Nanofluids Heat Transfer Characteristics for Application in Solar Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
92
, pp.
1041
1052
.
21.
Dickson
,
C.
,
Torabi
,
M.
, and
Karimi
,
N.
,
2016
, “
First and Second Law Analyses of Nanofluid Forced Convection in a Partially-Filled Porous Channel—The Effects of Local Thermal Non-Equilibrium and Internal Heat Sources
,”
Appl. Therm. Eng.
,
103
, pp.
459
480
.
22.
Yang
,
Y.-T.
, and
Hwang
,
C.-Z.
,
2003
, “
Calculation of Turbulent Flow and Heat Transfer in a Porous-Baffled Channel
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
771
780
.
23.
Li
,
H. Y.
,
Leong
,
K. C.
,
Jin
,
L. W.
, and
Chai
,
J. C.
,
2010
, “
Analysis of Fluid Flow and Heat Transfer in a Channel With Staggered Porous Blocks
,”
Int. J. Therm. Sci.
,
49
(
6
), pp.
950
962
.
24.
Davari
,
A.
, and
Maerefat
,
M.
,
2016
, “
Numerical Analysis of Fluid Flow and Heat Transfer in Entrance and Fully Developed Regions of a Channel With Porous Baffles
,”
ASME J. Heat Transfer
,
138
(
6
), p.
062601
.
25.
Siavashi
,
M.
,
Bahrami
,
H. R. T.
, and
Saffari
,
H.
,
2017
, “
Numerical Investigation of Porous Rib Arrangement on Heat Transfer and Entropy Generation of Nanofluid Flow in an Annulus Using a Two-Phase Mixture Model
,”
Numer. Heat Transfer, Part A
,
71
(
12
), pp.
1251
1273
.
26.
Siavashi
,
M.
, and
Joibary
,
S. M. M.
,
2019
, “
Numerical Performance Analysis of a Counter-Flow Double-Pipe Heat Exchanger With Using Nanofluid and Both Sides Partly Filled With Porous Media
,”
J. Therm. Anal. Calorim.
,
135
(
2
), pp.
1595
1610
.
27.
Li
,
C.
,
Cui
,
G.
,
Zhai
,
J.
,
Chen
,
S.
, and
Hu
,
Z.
,
2020
, “
Enhanced Heat Transfer and Flow Analysis in a Backward-Facing Step Using a Porous Baffle
,”
J. Therm. Anal. Calorim.
,
141
, pp.
1919
1932
.
28.
Chen
,
X.
,
Sun
,
C.
,
Xia
,
X.
,
Liu
,
R.
, and
Wang
,
F.
,
2019
, “
Conjugated Heat Transfer Analysis of a Foam Filled Double-Pipe Heat Exchanger for High-Temperature Application
,”
Int. J. Heat Mass Transfer
,
134
, pp.
1003
1013
.
29.
Ma
,
Y.
,
Mohebbi
,
R.
,
Rashidi
,
M. M.
,
Yang
,
Z.
, and
Fang
,
Y.
,
2020
, “
Baffle and Geometry Effects on Nanofluid Forced Convection Over Forward-and Backward-Facing Steps Channel by Means of Lattice Boltzmann Method
,”
Phys. A
,
554
, p.
124696
.
30.
Raizah
,
Z. A.
,
Ahmed
,
S. E.
, and
Aly
,
A. M.
,
2020
, “
ISPH Simulations of Natural Convection Flow in E-Enclosure Filled With a Nanofluid Including Homogeneous/Heterogeneous Porous Media and Solid Particles
,”
Int. J. Heat Mass Transfer
,
160
, p.
120153
.
31.
MacDonald
,
I.
,
El-Sayed
,
M. S.
,
Mow
,
K.
, and
Dullien
,
F. A. L.
,
1979
, “
Flow Through Porous Media—The Ergun Equation Revisited
,”
Ind. Eng. Chem. Fundam.
,
18
(
3
), pp.
199
208
.
You do not currently have access to this content.