Abstract

For current and future sustainability, refrigerants with high global warming potential (GWP) are being phased out and replaced with environmentally friendly refrigerants. To this end, research into the current and possible future low-GWP refrigerant alternatives in cascade refrigeration systems has caught much attention. In this paper, a mathematical model is developed to assess the optimum energetic, exergetic, and operational parameters of a cascade refrigeration system using water as a refrigerant in the upper cycle with R744, N2O, R41, R717, R290, and R1270 in the lower cycle for a cooling load of 10 TR (35.2 kW). Multiple studies have been conducted for evaporator temperatures between −25 and 5 °C. Results show that R41 and R717 as low- and intermediate-temperature refrigerants, respectively, are recommended for the bottom cycle. Furthermore, R717-water showed improved coefficient of performance (COP) compared to other top cycle refrigerants, with a COP improvement of 2.9% to 8.6%. This study demonstrates the thermal feasibility of using water as a refrigerant in low-temperature cascade systems. Using water as a refrigerant in the top cycle showed promising results in low-temperature applications without the risk of solidification. However, the drawbacks are the high volumetric flowrate and compressor discharge temperature, requiring high capacity water injected compressor.

References

1.
Çengel
,
Y. A.
, and
Boles
,
M. A.
,
2015
,
Thermodynamics: An Engineering Approach
,
McGraw-Hill Education
,
New York
.
2.
Harby
,
K.
,
2017
, “
Hydrocarbons and Their Mixtures as Alternatives to Environmental Unfriendly Halogenated Refrigerants: An Updated Overview
,”
Renewable Sustainable Energy Rev.
,
73
, pp.
1247
1264
.
3.
UNEP
,
2003
,
Handbook for the International Treaties for the Protection of the Ozone Layer
,
United Nation Environment Program (UNEP)
,
Nairobi, Kenya
.
4.
Mota-Babiloni
,
A.
,
Makhnatch
,
P.
, and
Khodabandeh
,
R.
,
2017
, “
Recent Investigations in HFCs Substitution with Lower GWP Synthetic Alternatives: Focus on Energetic Performance and Environmental Impact
,”
Int. J. Refrig.
,
82
, pp.
288
301
.
5.
Kruse
,
H.
, and
Rüssmann
,
H.
,
2006
, “
The Natural Fluid Nitrous Oxide-an Option as Substitute for Low Temperature Synthetic Refrigerants
,”
Int. J. Refrig.
,
29
(
5
), pp.
799
806
.
6.
Lee
,
T. S.
,
Liu
,
C. H.
, and
Chen
,
T. W.
,
2006
, “
Thermodynamic Analysis of Optimal Condensing Temperature of Cascade-Condenser in CO2/NH3 Cascade Refrigeration Systems
,”
Int. J. Refrig.
,
29
(
7
), pp.
1100
1108
.
7.
Getu
,
H. M.
, and
Bansal
,
P. K.
,
2008
, “
Thermodynamic Analysis of an R744-R717 Cascade Refrigeration System
,”
Int. J. Refrig.
,
31
(
1
), pp.
45
54
.
8.
Bingming
,
W.
,
Huagen
,
W.
,
Jianfeng
,
L.
, and
Ziwen
,
X.
,
2009
, “
Experimental Investigation on the Performance of NH3/CO2 Cascade Refrigeration System with Twin-Screw Compressor
,”
Int. J. Refrig.
,
32
(
6
), pp.
1358
1365
.
9.
Dopazo
,
J. A.
, and
Fernández-Seara
,
J.
,
2011
, “
Experimental Evaluation of a Cascade Refrigeration System Prototype with CO2 and NH3 for Freezing Process Applications
,”
Int. J. Refrig.
,
34
(
1
), pp.
257
267
.
10.
Amaris
,
C.
,
Tsamos
,
K. M.
, and
Tassou
,
S. A.
,
2019
, “
Analysis of an R744 Typical Booster Configuration, an R744 Parallel-Compressor Booster Configuration and an R717/R744 Cascade Refrigeration System for Retail Food Applications. Part 1: Thermodynamic Analysis
,”
Energy Procedia
,
161
, pp.
259
267
.
11.
Khalilzadeh
,
S.
,
Hossein Nezhad
,
A.
, and
Sarhaddi
,
F.
,
2019
, “
Reducing the Power Consumption of Cascade Refrigeration Cycle by a New Integrated System Using Solar Energy
,”
Energy Convers. Manage.
,
200
, p.
112083
.
12.
Llopis
,
R.
,
Sánchez
,
D.
,
Sanz-Kock
,
C.
,
Cabello
,
R.
, and
Torrella
,
E.
,
2015
, “
Energy and Environmental Comparison of Two-Stage Solutions for Commercial Refrigeration at Low Temperature: Fluids and Systems
,”
Appl. Energy
,
138
, pp.
133
142
.
13.
Cabello
,
R.
,
Sánchez
,
D.
,
Llopis
,
R.
,
Catalán
,
J.
,
Nebot-Andrés
,
L.
, and
Torrella
,
E.
,
2017
, “
Energy Evaluation of R152a as Drop in Replacement for R134a in Cascade Refrigeration Plants
,”
Appl. Therm. Eng.
,
110
, pp.
972
984
.
14.
Colorado
,
D.
,
Hernández
,
J. A.
, and
Rivera
,
W.
,
2012
, “
Comparative Study of a Cascade Cycle for Simultaneous Refrigeration and Heating Operating With Ammonia, R134a, Butane, Propane, and CO2 as Working Fluids
,”
Int. J. Sustainable Energy
,
31
(
6
), pp.
365
381
.
15.
Bhattacharyya
,
S.
,
Garai
,
A.
, and
Sarkar
,
J.
,
2009
, “
Thermodynamic Analysis and Optimization of a Novel N2O-CO2 Cascade System for Refrigeration and Heating
,”
Int. J. Refrig.
,
32
(
5
), pp.
1077
1084
.
16.
Sánchez
,
D.
,
Cabello
,
R.
,
Llopis
,
R.
,
Catalán-Gil
,
J.
, and
Nebot-Andrés
,
L.
,
2019
, “
Energy Assessment and Environmental Impact Analysis of an R134a/R744 Cascade Refrigeration Plant Upgraded With the Low-GWP Refrigerants R152a, R1234ze(E), Propane (R290) and Propylene (R1270)
,”
Int. J. Refrig.
,
104
, pp.
321
334
.
17.
Sun
,
Z.
,
Wang
,
Q.
,
Xie
,
Z.
,
Liu
,
S.
,
Su
,
D.
, and
Cui
,
Q.
,
2019
, “
Energy and Exergy Analysis of Low GWP Refrigerants in Cascade Refrigeration System
,”
Energy
,
170
, pp.
1170
1180
.
18.
Sun
,
Z.
,
Liang
,
Y.
,
Liu
,
S.
,
Ji
,
W.
,
Zang
,
R.
,
Liang
,
R.
, and
Guo
,
Z.
,
2016
, “
Comparative Analysis of Thermodynamic Performance of a Cascade Refrigeration System for Refrigerant Couples R41/R404A and R23/R404A
,”
Appl. Energy
,
184
, pp.
19
25
.
19.
Kilicarslan
,
A.
, and
Hosoz
,
M.
,
2010
, “
Energy and Irreversibility Analysis of a Cascade Refrigeration System for Various Refrigerant Couples
,”
Energy Convers. Manage.
,
51
(
12
), pp.
2947
2954
.
20.
Aktemur
,
C.
, and
Ozturk
,
I. T.
,
2021
, “
Energy and Exergy Analysis of a Subcritical Cascade Refrigeration System with Internal Heat Exchangers Using Environmentally Friendly Refrigerants
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102103
.
21.
Lachner
,
B. F.
,
Nellis
,
G. F.
, and
Reindl
,
D. T.
,
2007
, “
The Commercial Feasibility of the Use of Water Vapor as a Refrigerant
,”
Int. J. Refrig.
,
30
(
4
), pp.
699
708
.
22.
Hu
,
B.
,
Wu
,
D.
, and
Wang
,
R. Z.
,
2018
, “
Water Vapor Compression and Its Various Applications
,”
Renewable Sustainable Energy Rev.
,
98
, pp.
92
107
.
23.
Kilicarslan
,
A.
, and
Müller
,
N.
,
2005
, “
A Comparative Study of Water as a Refrigerant With Some Current Refrigerants
,”
Int. J. Energy Res.
,
29
(
11
), pp.
947
959
.
24.
Šarevski
,
M. N.
, and
Šarevski
,
V. N.
,
2016
, “
Characteristics of R718 Refrigeration/Heat Pump Systems With Two-Phase Ejectors
,”
Int. J. Refrig.
,
70
, pp.
13
32
.
25.
Wu
,
D.
,
Hu
,
B.
, and
Wang
,
R. Z.
,
2021
, “
Vapor Compression Heat Pumps with Pure Low-GWP Refrigerants
,”
Renewable Sustainable Energy Rev.
,
138
, p.
110571
.
26.
Shen
,
J.
,
Feng
,
G.
,
Xing
,
Z.
, and
Wang
,
X.
,
2019
, “
Theoretical Study of Two-Stage Water Vapor Compression Systems
,”
Appl. Therm. Eng.
,
147
, pp.
972
982
.
27.
Šarevski
,
M. N.
, and
Šarevski
,
V. N.
,
2012
, “
Characteristics of Water Vapor Turbocompressors Applied in Refrigeration and Heat Pump Systems
,”
Int. J. Refrig.
,
35
(
5
), pp.
1484
1496
.
28.
Yang
,
W. W.
,
Cao
,
X. Q.
,
He
,
Y. L.
, and
Yan
,
F. Y.
,
2017
, “
Theoretical Study of a High-Temperature Heat Pump System Composed of a CO2 Transcritical Heat Pump Cycle and a R152a Subcritical Heat Pump Cycle
,”
Appl. Therm. Eng.
,
120
, pp.
228
238
.
29.
Bellos
,
E.
, and
Tzivanidis
,
C.
,
2019
, “
A Theoretical Comparative Study of CO2 Cascade Refrigeration Systems
,”
Appl. Sci.
,
9
(
4
), p.
790
.
30.
Yilmaz
,
B.
,
Mancuhan
,
E.
, and
Erdonmez
,
N.
,
2018
, “
A Parametric Study on a Subcritical CO2/NH3 Cascade Refrigeration System for Low Temperature Applications
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092004
.
31.
Megdouli
,
K.
,
Ejemni
,
N.
,
Nahdi
,
E.
,
Mhimid
,
A.
, and
Kairouani
,
L.
,
2017
, “
Thermodynamic Analysis of a Novel Ejector Expansion Transcritical CO2/N2O Cascade Refrigeration (NEETCR) System for Cooling Applications at Low Temperatures
,”
Energy
,
128
, pp.
586
600
.
32.
Chowdhury
,
M. T.
, and
Mokheimer
,
E. M. A.
,
2021
, “
Energy and Exergy Performance Comparative Analysis of Solar Driven Organic Rankine Cycle Using Different Organic Fluids
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102107
.
33.
Tareq Chowdhury
,
M.
, and
Mokheimer
,
E. M. A.
,
2020
, “
Recent Developments in Solar and Low-Temperature Heat Sources Assisted Power and Cooling Systems: A Design Perspective
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
040801
.
34.
Joudi
,
K. A.
,
Mohammed
,
A. S. K.
, and
Aljanabi
,
M. K.
,
2003
, “
Experimental and Computer Performance Study of an Automotive Air Conditioning System with Alternative Refrigerants
,”
Energy Convers. Manage
,
44
(
18
), pp.
2959
2976
.
35.
Klein
,
S. A.
, 2019, “EES : Engineering Equation Solver.”
36.
Sanz-Kock
,
C.
,
Llopis
,
R.
,
Sánchez
,
D.
,
Cabello
,
R.
, and
Torrella
,
E.
,
2014
, “
Experimental Evaluation of a R134a/CO2 Cascade Refrigeration Plant
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
41
50
.
37.
Lorentzen
,
G.
,
1994
, “
Revival of Carbon Dioxide as a Refrigerant
,”
Int. J. Refrig.
,
17
(
5
), pp.
292
301
.
38.
Xu
,
X.
,
Hwang
,
Y.
, and
Radermacher
,
R.
,
2011
, “
Refrigerant Injection for Heat Pumping/Air Conditioning Systems: Literature Review and Challenges Discussions
,”
Int. J. Refrig.
,
34
(
2
), pp.
402
415
.
39.
Wang
,
B.
,
Shi
,
W.
,
Li
,
X.
, and
Yan
,
Q.
,
2008
, “
Numerical Research on the Scroll Compressor with Refrigeration Injection
,”
Appl. Therm. Eng.
,
28
(
5–6
), pp.
440
449
.
40.
Wang
,
B.
,
Shi
,
W.
, and
Li
,
X.
,
2009
, “
Numerical Analysis on the Effects of Refrigerant Injection on the Scroll Compressor
,”
Appl. Therm. Eng.
,
29
(
1
), pp.
37
46
.
41.
Wang
,
B.
,
Shi
,
W.
,
Han
,
L.
, and
Li
,
X.
,
2009
, “
Optimization of Refrigeration System with Gas-Injected Scroll Compressor
,”
Int. J. Refrig.
,
32
(
7
), pp.
1544
1554
.
42.
Jeon
,
Y.
,
Lee
,
S. H.
,
Kim
,
W.
,
Jung
,
J.
, and
Kim
,
Y.
,
2017
, “
Numerical Study on the Optimal Design of Injection-Hole Geometries of a Twin Rotary Compressor in a Liquid Injection Heat Pump
,”
Appl. Therm. Eng.
,
113
, pp.
1178
1188
.
43.
Chamoun
,
M.
,
Rulliere
,
R.
,
Haberschill
,
P.
, and
Peureux
,
J. L.
,
2013
, “
Modelica-Based Modeling and Simulation of a Twin Screw Compressor for Heat Pump Applications
,”
Appl. Therm. Eng.
,
58
(
1–2
), pp.
479
489
.
44.
Domanski
,
P. A.
,
1995
, “
Minimizing Throttling Losses in the Refrigeration Cycle
,”
19th International Congress of Refrigeration
.
You do not currently have access to this content.