Abstract

The current research assessed the evolution of gases from pyrolysis of biomass and from the subsequent combustion of bio-chars. Raw and torrefied biomass was pyrolyzed in nitrogen or carbon dioxide under high heating rates (104 K/s) and high temperatures (1450 K). Pyrolyzates gases were monitored for carbon, nitrogen, and sulfur oxides. Subsequently, generated bio-chars were burned in both conventional (air) and simulated oxy-combustion (O2/CO2) gases. In principle, the oxy-combustion of renewable biomass coupled with carbon capture and utilization/sequestration can help remove atmospheric CO2. Pyrolysis of biomass in CO2 generated lower char yields, lower SO2 and NO, and higher CO2, CO, and HCN mole fractions, compared with pyrolysis in N2. HCN was the most prominent among all measured nitrogen-bearing gases (HCN, NH3, and NO) from biomass pyrolysis. Compared with their combustion in air, bio-chars burned more effectively in 30%O2/79%CO2 and less effectively in 21%O2/79%CO2. Emissions of CO were the lowest in 21%O2/79%CO2. Emissions of HCN were the highest in air combustion and decreased with increasing O2 mole fraction in oxy-combustion; emissions of NO were highest in 30%O2/79%CO2, and emissions of NO were dominant during bio-char oxy-combustion compared with other N-compounds. In oxy-combustion, bio-chars released the lowest emissions of SO2. Finally, the emissions of CO, NO, HCN, and SO2 from the combustion of distiller’s dried grains with solubles bio-chars were higher than those from rice husk bio-chars because of different physicochemical properties.

References

1.
U.S. Environmental Protection Agency (EPA)
,
2020
, “
EPA Proposes First Greenhouse Gas Emissions Standards for Aircraft
,” https://www.epa.gov/newsreleases/epa-proposes-first-greenhouse-gas-emissions-standards-aircraft, Accessed May 10, 2021.
2.
Ren
,
X.
,
Sun
,
R.
,
Meng
,
X.
,
Vorobiev
,
N.
,
Schiemann
,
M.
, and
Levendis
,
Y. A.
,
2017
, “
Carbon, Sulfur and Nitrogen Oxide Emissions From Combustion of Pulverized Raw and Torrefied Biomass
,”
Fuel
,
188
, pp.
310
323
.
3.
Leckner
,
B.
, and
Gómez-Barea
,
A.
,
2014
, “
Oxy-Fuel Combustion in Circulating Fluidized Bed Boilers
,”
Appl. Energy
,
125
, pp.
308
318
.
4.
EIA
,
2021
,
Annual Energy Outlook 2020 with Projections to 2050
,
U.S. Department of Energy, Energy Information Administration
,
Washington, DC
, https://www.eia.gov/outlooks/aeo/, Accessed May 17, 2021.
5.
Rokni
,
E.
,
Ren
,
X.
,
Panahi
,
A.
, and
Levendis
,
Y. A.
,
2018
, “
Emissions of SO2, NOx, CO2, and HCl From Co-Firing of Coals With Raw and Torrefied Biomass Fuels
,”
Fuel
,
211
, pp.
363
374
.
6.
Rokni
,
E.
,
Liu
,
Y.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2019
, “
Nitrogen-Bearing Emissions From Burning Corn Straw in a Fixed-Bed Reactor: Effects of Fuel Moisture, Torrefaction and Air Flowrate
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
0822021
.
7.
Ren
,
X.
,
Meng
,
X.
,
Panahi
,
A.
,
Rokni
,
E.
,
Sun
,
R.
, and
Levendis
,
Y. A.
,
2018
, “
Hydrogen Chloride Release From Combustion of Corn Straw in a Fixed Bed
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051801
.
8.
Toftegaard
,
M. B.
,
Brix
,
J.
,
Jensen
,
P. A.
,
Glarborg
,
P.
, and
Jensen
,
A. D.
,
2010
, “
Oxy-Fuel Combustion of Solid Fuels
,”
Prog. Energy Combust. Sci.
,
36
(
5
), pp.
581
625
.
9.
Chen
,
L.
,
Yong
,
S. Z.
, and
Ghoniem
,
A. F.
,
2012
, “
Oxy-Fuel Combustion of Pulverized Coal: Characterization, Fundamentals, Stabilization and CFD Modeling
,”
Prog. Energy Combust. Sci.
,
38
(
2
), pp.
156
214
.
10.
Normann
,
F.
,
Andersson
,
K.
,
Leckner
,
B.
, and
Johnsson
,
F.
,
2009
, “
Emission Control of Nitrogen Oxides in the Oxy-Fuel Process
,”
Prog. Energy Combust. Sci.
,
35
(
5
), pp.
385
397
.
11.
Gil
,
M. V.
,
Riaza
,
J.
,
Álvarez
,
L.
,
Pevida
,
C.
,
Pis
,
J. J.
, and
Rubiera
,
F.
,
2012
, “
Oxy-Fuel Combustion Kinetics and Morphology of Coal Chars Obtained in N2 and CO2 Atmospheres in an Entrained Flow Reactor
,”
Appl. Energy
,
91
(
1
), pp.
67
74
.
12.
Uddin
,
S. N.
, and
Barreto
,
L.
,
2007
, “
Biomass-Fired Cogeneration Systems With CO2 Capture and Storage
,”
Renew. Energy
,
32
(
6
), pp.
1006
1019
.
13.
Azar
,
C.
,
Lindgren
,
K.
,
Larson
,
E.
, and
Möllersten
,
K.
,
2006
, “
Carbon Capture and Storage From Fossil Fuels and Biomass—Costs and Potential Role in Stabilizing the Atmosphere
,”
Clim. Change
,
74
(
1–3
), pp.
47
79
.
14.
Wang
,
X.
,
Panahi
,
A.
,
Qi
,
X.
,
Zhai
,
M.
,
Dong
,
P.
, and
Levendis
,
Y. A.
,
2020
, “
Product Compositions From Sequential Biomass Pyrolysis and Gasification of Its Char Residue
,”
J. Energy Eng.
,
146
(
5
), p.
04020049
.
15.
Khiari
,
B.
,
Jeguirim
,
M.
,
Limousy
,
L.
, and
Bennici
,
S.
,
2019
, “
Biomass Derived Chars for Energy Applications
,”
Renew. Sustain. Energy Rev.
,
108
, pp.
253
273
.
16.
Gao
,
X.
, and
Wu
,
H.
,
2011
, “
Bio-Char as a Fuel: 4. Emission Behavior and Characteristics of PM1 and PM10 From the Combustion of Pulverized Bio-Char in a Drop-Tube Furnace
,”
Energy Fuels
,
25
(
6
), pp.
2702
2710
.
17.
Ren
,
X.
,
Rokni
,
E.
,
Liu
,
Y.
, and
Levendis
,
Y. A.
,
2018
, “
Reduction of HCl Emissions From Combustion of Biomass by Alkali Carbonate Sorbents or by Thermal Pretreatment
,”
J. Energy Eng.
,
144
(
4
), p.
040180451
.
18.
Ren
,
X.
,
Rokni
,
E.
,
Sun
,
R.
,
Meng
,
X.
, and
Levendis
,
Y. A.
,
2017
, “
Evolution of Chlorine-Bearing Gases During Corn Straw Torrefaction at Different Temperatures
,”
Energy Fuels
,
31
(
12
), pp.
13713
13723
.
19.
Liu
,
Y.
,
Rokni
,
E.
,
Yang
,
R.
,
Ren
,
X.
,
Sun
,
R.
, and
Levendis
,
Y. A.
,
2021
, “
Torrefaction of Corn Straw in Oxygen and Carbon Dioxide Containing Gases, Mass/Energy Yields and Evolution of Gaseous Species
,”
Fuel
,
285
, p.
119044
.
20.
Zheng
,
L.
,
2011
,
Oxy-Fuel Combustion for Power Generation and Carbon Dioxide (CO2) Capture
,
Woodhead Publishing Series in Energy
,
Cambridge, UK
.
21.
Khatami
,
R.
,
Stivers
,
C.
,
Joshi
,
K.
,
Levendis
,
Y. A.
, and
Sarofim
,
A. F.
,
2012
, “
Combustion Behavior of Single Particles From Three Different Coal Ranks and From Sugar Cane Bagasse in O2/N2 and O2/CO2 Atmospheres
,”
Combust. Flame
,
159
(
3
), pp.
1253
1271
.
22.
Khatami
,
R.
,
Stivers
,
C.
, and
Levendis
,
Y. A.
,
2012
, “
Ignition Characteristics of Single Coal Particles From Three Different Ranks in O2/N2 and O2/CO2 Atmospheres
,”
Combust. Flame
,
159
(
12
), pp.
3554
3568
.
23.
Riaza
,
J.
,
Álvarez
,
L.
,
Gil
,
M. V.
,
Khatami
,
R.
,
Levendis
,
Y. A.
,
Pis
,
J. J.
,
Pevida
,
C.
, and
Rubiera
,
F.
,
2013
, “
Ignition Behavior of Coal and Biomass Blends Under Oxy-Firing Conditions With Steam Additions
,”
Greenhouse Gases: Sci. Technol.
,
3
(
5
), pp.
397
414
.
24.
Riaza
,
J.
,
Khatami
,
R.
,
Levendis
,
Y. A.
,
Álvarez
,
L.
,
Gil
,
M. V.
,
Pevida
,
C.
,
Rubiera
,
F.
, and
Pis
,
J. J.
,
2014
, “
Single Particle Ignition and Combustion of Anthracite, Semi-Anthracite and Bituminous Coals in Air and Simulated Oxy-Fuel Conditions
,”
Combust. Flame
,
161
(
4
), pp.
1096
1108
.
25.
Riaza
,
J.
,
Khatami
,
R.
,
Levendis
,
Y. A.
,
Álvarez
,
L.
,
Gil
,
M. V.
,
Pevida
,
C.
,
Rubiera
,
F.
, and
Pis
,
J. J.
,
2014
, “
Combustion of Single Particles of Waste Biomasses in Air and in Oxy-Fuel Conditions
,”
Biomass Bioenergy
,
64
, pp.
162
174
.
26.
Rokni
,
E.
,
Panahi
,
A.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2016
, “
Curtailing the Generation of Sulfur Dioxide and Nitrogen Oxide Emissions by Blending and Oxy-Combustion of Coals
,”
Fuel
,
181
, pp.
772
784
.
27.
Kazanc
,
F.
,
Khatami
,
R.
,
Manoel Crnkovic
,
P.
, and
Levendis
,
Y. A.
,
2011
, “
Emissions of NOx and SO2 From Coals of Various Ranks, Bagasse, and Coal-Bagasse Blends Burning in O2/N2 and O2/CO2 Environments
,”
Energy Fuels
,
25
(
7
), pp.
2850
2861
.
28.
Panahi
,
A.
,
Toole
,
N.
,
Wang
,
X.
, and
Levendis
,
Y. A.
,
2020
, “
On the Minimum Oxygen Requirements for Oxy-Combustion of Torrefied Biomass
,”
Combust. Flame
,
213
, pp.
426
440
.
29.
Meng
,
X.
,
Rokni
,
E.
,
Zhou
,
W.
,
Qi
,
H.
,
Sun
,
R.
, and
Levendis
,
Y. A.
,
2020
, “
Emissions From Oxy-Combustion of Raw and Torrefied Biomass
,”
ASME J. Energy Resour. Technol.
,
142
, p.
1223071
.
30.
Châtel-Pélage
,
F.
,
Varagani
,
R.
,
Pranda
,
P.
,
Perrin
,
N.
, and
Bose
,
A.
,
2006
, “
Applications of Oxygen for NOx Control and CO2 Capture in Coal-Fired Power Plants
,”
Therm. Sci.
,
10
(
3
), pp.
119
142
.
31.
Croiset
,
E.
, and
Thambimuthu
,
K. V.
,
2001
, “
NOX and SO2 Emissions From O2/CO2 Recycle Coal Combustion
,”
Fuel
,
80
(
14
), pp.
2117
2121
.
32.
Nozaki
,
T.
,
Takano
,
S. I.
,
Kiga
,
T.
,
Omata
,
K.
, and
Kimura
,
N.
,
1997
, “
Analysis of the Flame Formed During Oxidation of Pulverized Coal by an O2-CO2 Mixture
,”
Energy
,
22
(
2–3
), pp.
199
205
.
33.
Wall
,
T.
,
Liu
,
Y.
,
Spero
,
C.
,
Elliott
,
L.
,
Khare
,
S.
,
Rathnam
,
R.
,
Zeenathal
,
F.
,
Moghtaderi
,
B.
,
Buhre
,
B.
,
Sheng
,
C.
,
Gupta
,
R.
,
Yamada
,
T.
,
Makino
,
K.
, and
Yu
,
J.
,
2009
, “
An Overview on Oxyfuel Coal Combustion—State of the Art Research and Technology Development
,”
Chem. Eng. Res. Des.
,
87
(
8
), pp.
1003
1016
.
34.
Khatami
,
R.
, and
Levendis
,
Y. A.
,
2015
, “
An Overview of Coal Rank Influence on Ignition and Combustion Phenomena at the Particle Level
,”
Combust. Flame
,
164
(
6
), pp.
22
34
.
35.
Duan
,
L.
,
Duan
,
Y.
,
Zhao
,
C.
, and
Anthony
,
E. J.
,
2015
, “
NO Emission During Co-Firing Coal and Biomass in an Oxy-Fuel Circulating Fluidized Bed Combustor
,”
Fuel
,
150
, pp.
8
13
.
36.
Riaza
,
J.
,
Gil
,
M. V.
,
Álvarez
,
L.
,
Pevida
,
C.
,
Pis
,
J. J.
, and
Rubiera
,
F.
,
2012
, “
Oxy-Fuel Combustion of Coal and Biomass Blends
,”
Energy
,
41
(
1
), pp.
429
435
.
37.
Panahi
,
A.
,
Sirumalla
,
S. K.
,
West
,
R. H.
, and
Levendis
,
Y. A.
,
2019
, “
Temperature and Oxygen Partial Pressure Dependencies of the Coal-Bound Nitrogen to NOx Conversion in O2/CO2 Environments
,”
Combust. Flame
,
206
, pp.
98
111
.
38.
Rhodes
,
J. S.
, and
Keith
,
D. W.
,
2008
, “
Biomass With Capture: Negative Emissions Within Social and Environmental Constraints: An Editorial Comment
,”
Clim. Change
,
87
(
3
), pp.
321
328
.
39.
Sher
,
F.
,
Pans
,
M. A.
,
Sun
,
C.
,
Snape
,
C.
, and
Liu
,
H.
,
2018
, “
Oxy-Fuel Combustion Study of Biomass Fuels in a 20 KWth Fluidized Bed Combustor
,”
Fuel
,
215
, pp.
778
786
.
40.
Panahi
,
A.
,
Levendis
,
Y. A.
,
Vorobiev
,
N.
, and
Schiemann
,
M.
,
2017
, “
Direct Observations on the Combustion Characteristics of Miscanthus and Beechwood Biomass Including Fusion and Spherodization
,”
Fuel Process. Technol.
,
166
, pp.
41
49
.
41.
Zhao
,
K.
,
Jensen
,
A. D.
, and
Glarborg
,
P.
,
2014
, “
NO Formation During Oxy-Fuel Combustion of Coal and Biomass Chars
,”
Energy Fuels
,
28
(
7
), pp.
4684
4693
.
42.
Arsenault
,
R. H.
,
Grandbois
,
M. A.
,
Chornet
,
E.
, and
Timbers
,
G. E.
,
1980
, “Pyrolysis of Agricultural Residues in a Rotary Kiln,”
Thermal Conversion of Solid Wastes and Biomass
,
J. L.
Jones
,
S. B.
Radding
,
S.
Takaoka
,
A. G.
Buekens Masakatsu Hiraoka
, and
R.
Overend
, eds., Vol.
130
,
ACS Symposium Series
,
United States
, pp.
337
350
.
43.
Dall’Ora
,
M.
,
Jensen
,
P. A.
, and
Jensen
,
A. D.
,
2008
, “
Suspension Combustion of Wood: Influence of Pyrolysis Conditions on Char Yield, Morphology and Reactivity
,”
Energy Fuels
,
22
(
5
), pp.
2955
2962
.
44.
Trubetskaya
,
A.
,
Jensen
,
P. A.
,
Jensen
,
A. D.
,
Garcia Llamas
,
A. D.
,
Umeki
,
K.
, and
Glarborg
,
P.
,
2016
, “
Effect of Fast Pyrolysis Conditions on Biomass Solid Residues at High Temperatures
,”
Fuel Process. Technol.
,
143
, pp.
118
129
.
45.
Zhang
,
H.
,
Xiao
,
R.
,
Wang
,
D.
,
He
,
G.
,
Shao
,
S.
,
Zhang
,
J.
, and
Zhong
,
Z.
,
2011
, “
Biomass Fast Pyrolysis in a Fluidized Bed Reactor Under N2, CO2, CO, CH4 and H2 Atmospheres
,”
Bioresour. Technol.
,
102
(
5
), pp.
4258
4264
.
46.
47.
Guizani
,
C.
,
Escudero Sanz
,
F. J.
, and
Salvador
,
S.
,
2014
, “
Effects of CO2 on Biomass Fast Pyrolysis: Reaction Rate, Gas Yields and Char Reactive Properties
,”
Fuel
,
116
, pp.
310
320
.
48.
Liu
,
Z.
,
Zhang
,
F.
,
Liu
,
H.
,
Ba
,
F.
,
Yan
,
S.
, and
Hu
,
J.
,
2018
, “
Pyrolysis/Gasification of Pine Sawdust Biomass Briquettes Under Carbon Dioxide Atmosphere: Study on Carbon Dioxide Reduction (Utilization) and Bio-Char Briquettes Physicochemical Properties
,”
Bioresour. Technol.
,
249
, pp.
983
991
.
49.
Mimmo
,
T.
,
Panzacchi
,
P.
,
Baratieri
,
M.
,
Davies
,
C. A.
, and
Tonon
,
G.
,
2014
, “
Effect of Pyrolysis Temperature on Miscanthus (Miscanthus × Giganteus) Bio-Char Physical, Chemical and Functional Properties
,”
Biomass Bioenergy
,
62
, pp.
149
157
.
50.
Neves
,
D.
,
Thunman
,
H.
,
Matos
,
A.
,
Tarelho
,
L.
, and
Gómez-Barea
,
A.
,
2011
, “
Characterization and Prediction of Biomass Pyrolysis Products
,”
Prog. Energy Combust. Sci.
,
37
(
5
), pp.
611
630
.
51.
Dufour
,
A.
,
Valin
,
S.
,
Castelli
,
P.
,
Thiery
,
S.
,
Boissonnet
,
G.
,
Zoulalian
,
A.
, and
Glaude
,
P.-A.
,
2009
, “
Mechanisms and Kinetics of Methane Thermal Conversion in a Syngas
,”
Ind. Eng. Chem. Res.
,
48
(
14
), pp.
6564
6572
.
52.
Karlström
,
O.
,
Perander
,
M.
,
DeMartini
,
N.
,
Brink
,
A.
, and
Hupa
,
M.
,
2017
, “
Role of Ash on the NO Formation During Char Oxidation of Biomass
,”
Fuel
,
190
, pp.
274
280
.
53.
Meng
,
X.
,
Sun
,
R.
,
Zhou
,
W.
,
Liu
,
X.
,
Yan
,
Y.
, and
Ren
,
X.
,
2018
, “
Effects of Corn Ratio With Pine on Biomass Co-Combustion Characteristics in a Fixed Bed
,”
Appl. Therm. Eng.
,
142
, pp.
30
42
.
54.
Farrow
,
T. S.
,
Sun
,
C.
, and
Snape
,
C. E.
,
2015
, “
Impact of CO2 on Biomass Pyrolysis, Nitrogen Partitioning, and Char Combustion in a Drop Tube Furnace
,”
J. Anal. Appl. Pyrolysis
,
113
, pp.
323
331
.
55.
Wang
,
X.
,
Ren
,
Q.
,
Li
,
W.
,
Li
,
H.
,
Li
,
S.
, and
Lu
,
Q.
,
2017
, “
Nitrogenous Gas Emissions From Coal/Biomass Co-Combustion Under a High Oxygen Concentration in a Circulating Fluidized Bed
,”
Energy Fuels
,
31
(
3
), pp.
3234
3242
.
56.
Riaza
,
J.
,
Gibbins
,
J.
, and
Chalmers
,
H.
,
2017
, “
Ignition and Combustion of Single Particles of Coal and Biomass
,”
Fuel
,
202
, pp.
650
655
.
57.
Gao
,
S.
,
Zhao
,
J.
,
Wang
,
Z.
,
Fang
,
Y.
,
Wang
,
J.
, and
Huang
,
J.
,
2013
, “
Effect of CO2 on Pyrolysis Behaviors of Lignite
,”
J. Fuel Chem. Technol.
,
41
(
3
), pp.
257
264
.
58.
Pohl
,
J. H.
, and
Sarofim
,
A. F.
,
1977
, “
Devolatilization and Oxidation of Coal Nitrogen
,”
Symp. (Int.) Combust.
,
16
(
1
), pp.
491
501
.
59.
Goel
,
S.
,
Zhang
,
B.
, and
Sarofim
,
A. F.
,
1996
, “
NO and N2O Formation During Char Combustion: Is It HCN or Surface Attached Nitrogen?
,”
Combust. Flame
,
104
(
1–2
), pp.
213
217
.
60.
Ren
,
Q.
,
Zhao
,
C.
,
Chen
,
X.
,
Duan
,
L.
,
Li
,
Y.
, and
Ma
,
C.
,
2011
, “
NOX and N2O Precursors (NH3 and HCN) From Biomass Pyrolysis: Co-Pyrolysis of Amino Acids and Cellulose, Hemicellulose and Lignin
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
1715
1722
.
61.
Hu
,
Y.
,
Naito
,
S.
,
Kobayashi
,
N.
, and
Hasatani
,
M.
,
2000
, “
CO2, NOx, and SO2, Emissions From the Combustion of Coal With High Oxygen Concentration Gases
,”
Fuel
,
79
(
15
), pp.
1925
1932
.
62.
Li
,
Y. H.
,
Radovic
,
L. R.
,
Lu
,
G. Q.
, and
Rudolph
,
V.
,
1999
, “
A New Kinetic Model for the NO-Carbon Reaction
,”
Chem. Eng. Sci.
,
54
(
19
), pp.
4125
4136
.
63.
Chang
,
L.
,
Xie
,
Z.
,
Xie
,
K. C.
,
Pratt
,
K. C.
,
Hayashi
,
J. I.
,
Chiba
,
T.
, and
Li
,
C.-Z.
,
2003
, “
Formation of NOx Precursors During the Pyrolysis of Coal and Biomass. Part VI. Effects of Gas Atmosphere on the Formation of NH3 and HCN
,”
Fuel
,
82
(
10
), pp.
1159
1166
.
64.
Giménez-López
,
J.
,
Millera
,
Á
,
Bilbao
,
R.
, and
Alzueta
,
M. U.
,
2015
, “
Interactions of HCN With NO in a CO2 Atmosphere Representative of Oxy-Fuel Combustion Conditions
,”
Energy Fuels
,
29
(
10
), pp.
6593
6597
.
You do not currently have access to this content.