Abstract

This research is about “controversial analysis of a refrigeration vapor-compression cycle,” using R22, and environmentally friendly hydrofluorocarbon (HFC) refrigerants such as R134a, R407c, and R410a in various climatic conditions. For initiation, a complete database was provided for thermophysical properties of the refrigerants’ performances. Then, P–h, s–T, s–h equations are derived in matlab and Excel with the maximum R2. Meanwhile, five climatic conditions (from hot to cold state) are assumed. Consequently, temperature, pressure, enthalpy, and entropy of the cycle states are illustrated for aforesaid conditions as per working fluids properties in the form of quadripartite diagrams. Subsequently, the cycle was analyzed thermodynamically. The coeffcient of performance (COP) was performed for refrigeration (cooling procedure), heat pump (heating procedure), and both heating and cooling for both standard and actual conditions. Afterward, the calculation was performed for parameters like energy efficiency ratio (EER), heat rejected ratio (HRR), capacity, energy, exergy, irreversibility, and exergy destruction ratio (EDR) of each system component according to the first and second laws of thermodynamics, individually. Derived and calculated values in each session illustrated in 3D diagrams on which TEvap s, TCond s and working fluids for each assumed climatic condition can be distinguished easily. A concise analytic study was performed for the increasing and decreasing in values. Forecast for two steps upper and lower than all values derived for trending. Making a trend for indicating either positive or negative inclines of the values and proposing a development for all similar cycles can be considered as the novelty of this research.

References

1.
Douglas
,
J. D.
,
Braun
,
J. E.
,
Groll
,
E. A.
, and
Tree
,
D. R.
,
1999
, “
A Cost-Based Method for Comparing Alternative Refrigerants Applied to R-22 Systems
,”
Int. J. Refrig.
,
22
(
2
), pp.
107
125
.
2.
Bolaji
,
B. O.
, and
Huan
,
Z.
,
2013
, “
Ozone Depletion and Global Warming: Case for the Use of Natural Refrigerant—A Review
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
49
54
.
3.
Vali
,
S. S.
,
Setty
,
T. P.
, and
Babu
,
A.
,
2018
, “
Analytical Computation of Thermodynamic Performance Parameters of Actual Vapor Compression Refrigeration System With R22, R32, R134a, R152a, R290, and R1270
,”
MATEC Web of Conferences.
4.
Shaik
,
S. V.
, and
Babu
,
T. P. A.
,
2017
, “
Theoretical Computation of Performance of Sustainable Energy Efficient R22 Alternatives for Residential Air Conditioners
,”
Energy Procedia
,
138
, pp.
710
716
.
5.
Joshi
,
Y. G.
, and
Zanwar
,
D. R.
,
2019
, “
Thermodynamic Evaluation of Vapor-Compression Refrigeration System With Theoretical Exergy Analysis by Using R22, R134a, R410a
,”
Int. J. Mech. Prod. Eng. Res. Dev.
,
9
(
1
), pp.
74
79
.
6.
El Sayed
,
A. R.
,
El Morsi
,
M.
, and
Mahmoud
,
N. A.
,
2017
, “
Thermodynamic Analysis of a Simple Refrigeration Cycle Using Hydrocarbon Refrigerants As Substitute to R22
,”
Int. J. Adv. Eng. Manage. Res.
,
2
(
2
).
7.
Ding
,
G. L.
,
Wu
,
Z.
,
Wang
,
K.
, and
Fukaya
,
M.
,
2007
, “
Extension of the Applicable Range of the Implicit Curve-Fitting Method for Refrigerant Thermodynamic Properties to Critical Pressure
,”
Int. J. Refrig.
,
30
(
3
), pp.
418
432
.
8.
Xu
,
Z.
, and
Wang
,
R.
,
2020
, “
Air-Conditioning and Refrigeration: Current Status and Future Perspectives
,”
Kexue Tongbao/Chin. Sci. Bull.
,
65
(
24
), pp.
2555
2570
.
9.
Senawi
,
M. Y.
, and
Mahmod
,
F. W.
,
2016
, “
Simulation of a Simple Vapor-Compression Refrigeration System Using R134a
,”
J. Teknol.
,
78
(
9–2
), pp.
25
31
.
10.
de Paula
,
C. H.
,
Duarte
,
W. M.
,
Rocha
,
T. T. M.
,
de Oliveira
,
R. N.
, and
Maia
,
A. A. T.
,
2020
, “
Optimal Design and Environmental, Energy and Exergy Analysis of a Vapor Compression Refrigeration System Using R290, R1234yf, and R744 As Alternatives to Replace R134a
,”
Int. J. Refrig.
,
113
, pp.
10
20
.
11.
Granryd
,
E.
,
2001
, “
Hydrocarbons As Refrigerants—An Overview
,”
Int. J. Refrig.
,
24
(
1
), pp.
15
24
.
12.
Mota-Babiloni
,
A.
,
Belman-Flores
,
J. M.
,
Makhnatch
,
P.
,
Navarro-Esbrí
,
J.
, and
Barroso-Maldonado
,
J. M.
,
2018
, “
Experimental Exergy Analysis of R513A to Replace R134a in a Small Capacity Refrigeration System
,”
Energy
,
162
, pp.
99
110
.
13.
Ben Jemaa
,
R.
,
Mansouri
,
R.
,
Boukholda
,
I.
, and
Bellagi
,
A.
,
2017
, “
Energy and Exergy Investigation of R1234ze As R134a Replacement in Vapor Compression Chillers
,”
Int. J. Hydrogen Energy
,
42
(
17
), pp.
12877
12887
.
14.
Belman-Flores
,
J. M.
,
Rangel-Hernández
,
V. H.
,
Usón
,
S.
, and
Rubio-Maya
,
C.
,
2017
, “
Energy and Exergy Analysis of R1234yf As a Drop-In Replacement for R134a in a Domestic Refrigeration System
,”
Energy
,
132
, pp.
116
125
.
15.
Sun
,
J.
,
Li
,
W.
, and
Cui
,
B.
,
2020
, “
Energy and Exergy Analyses of R513a As a R134a Drop-In Replacement in a Vapor Compression Refrigeration System
,”
Int. J. Refrig.
,
112
, pp.
348
356
.
16.
Gill
,
J.
, and
Singh
,
J.
,
2017
, “
Experimental Analysis of R134a/LPG As Replacement of R134a in a Vapor-Compression Refrigeration System
,”
Int. J. Air-Cond. Refrig.
,
25
(
2
), p.
1750015
.
17.
Gill
,
J.
, and
Singh
,
J.
,
2017
, “
Energy Analysis of Vapor Compression Refrigeration System Using a Mixture of R134a and LPG As a Refrigerant
,”
Int. J. Refrig.
,
84
, pp.
287
299
.
18.
Gill
,
J.
, and
Singh
,
J.
,
2018
, “
Component-wise Exergy and Energy Analysis of Vapor Compression Refrigeration System Using a Mixture of R134a and LPG As a Refrigerant
,”
Heat and Mass Transfer
,
54
(
5
), pp.
1367
1380
.
19.
Ashrae
,
2004
,
ASHRAE HANDBOOK HVAC Systems and Equipment
,
ASHRAE
.
20.
Help
,
S.
,
2005
,
ASHRAE Handbook
,
ASHRAE
, pp.
1
5
.
21.
American Society of Heating Refrigerating and Air-Conditioning Engineers Inc.
,
2015
,”
ASHRAE Handbook—Heating, Ventilating, and Air-Conditioning Applications
, SI ed.,
American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
, pp.
12.1
12.16
.
22.
ASHRAE
,
2019
,
ASHRAE Handbook—HVAC Applications
, SI ed.,
ASHRAE
, p.
1357
.
23.
Kazemi
,
F. J.
,
1998
,
Refrigeration; Basic Principles and Methods (in Persian)
, Vol.
1
.
24.
Calm
,
J. M.
,
Hanson
,
S. S.
,
Marriott
,
C. E.
,
Amrane
,
K.
,
Higa
,
R. T.
,
Hogan
,
J. F.
, et al
,
2010
, “
ANSI/ASHRAE/IES Standard 90.1-2010 Energy Standard for Buildings Except for Low-Rise Residential Buildings
,” ASHRAE, p.
224
.
25.
ASHRAE
,
2000
,
ASHRAE Handbook—HVAC Systems and Equipment
, SI ed.,
ASHRAE Handbook
.
26.
Suong
,
C. O.
, and
Asanakham
,
A.
,
2020
, “
Evaluation of a Single-Stage Heat Pump Performance by the Figure of Merit (FOM)
,”
Energy Rep.
,
6
, pp.
2735
2420
.
27.
Sachdeva
,
G.
, and
Jain
,
V.
,
2016
, “
Comparative Exergy Analysis of Vapor Compression Refrigeration System Using Alternative Refrigerants
,”
Int. J. Mech. Mechatron. Eng.
,
10
(
6
), pp.
1081
1108
.
28.
Cleland
,
A. C.
,
1994
, “
Polynomial Curve-Fits for Refrigerant Thermodynamic Properties: Extension to Include R134a
,”
Int. J. Refrig.
,
17
(
4
), pp.
245
249
.
29.
Aprea
,
C.
,
de Rossi
,
F.
,
Greco
,
A.
, and
Renno
,
C.
,
2003
, “
Refrigeration Plant Exergetic Analysis Varying the Compressor Capacity
,”
Int. J. Energy Res.
,
27
(
7
), pp.
653
669
.
30.
Aprea
,
C.
, and
Greco
,
A.
,
2002
, “
An Exergetic Analysis of R22 Substitution
,”
Appl. Therm. Eng.
,
22
(
13
), pp.
1455
1469
.
31.
Aprea
,
C.
, and
Renno
,
C.
,
2004
, “
Experimental Comparison of R22 With R417A Performance in a Vapor Compression Refrigeration Plant Subjected to a Cold Store
,”
Energy Convers. Manage.
,
45
(
11–12
), pp.
1807
1819
.
32.
Comakli
,
K.
,
Simsek
,
F.
,
Comakli
,
O.
, and
Sahin
,
B.
,
2009
, “
Determination of Optimum Working Conditions R22 and R404A Refrigerant Mixtures in Heat Pumps Using Taguchi Method
,”
Appl. Energy
,
86
(
11
), pp.
2451
2458
.
33.
Baskaran
,
A.
, and
Koshy Mathews
,
P.
,
2012
, “
A Performance Comparison of Vapour Compression Refrigeration System Using Eco-Friendly Refrigerants of Low Global Warming Potential
,”
Int. J. Sci. Res. Publ.
,
2
(
1
), pp.
2250
3153
.
34.
Bejan
,
A.
,
2016
,
Advanced Engineering Thermodynamics
,
Wiley
, pp.
1
746
.
35.
Dinçer
,
I.
, and
Kanoǧlu
,
M.
,
2010
,
Refrigeration Systems and Applications
, 2nd ed., Wiley, Chichester, UK.
36.
Domanski
,
P. A.
,
Steven Brown
,
J.
,
Heo
,
J.
,
Wojtusiak
,
J.
, and
McLinden
,
M. O.
,
2014
, “
A Thermodynamic Analysis of Refrigerants: Performance Limits of the Vapor Compression Cycle
,”
Int. J. Refrig.
,
38
(
1
), pp.
71
79
.
37.
Elakdhar
,
M.
,
Nehdi
,
E.
, and
Kairouani
,
L.
,
2007
, “
Analysis of a Compression/Ejection Cycle for Domestic Refrigeration
,”
Ind. Eng. Chem. Res.
,
46
(
13
), pp.
4639
4644
.
38.
Harby
,
K.
,
2017
, “
Hydrocarbons and Their Mixtures As Alternatives to Environmental Unfriendly Halogenated Refrigerants: An Updated Overview
,”
Renewable Sustainable Energy Rev.
,
73
, pp.
1247
1264
.
39.
Havelský
,
V.
,
2000
, “
Investigation of Refrigerating System With R12 Refrigerant Replacements
,”
Appl. Therm. Eng.
,
20
(
2
), pp.
133
140
.
40.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2010
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties (REFPROP), Version 9.0
,”
Phys Chem Prop.
http://www.mendeley.com/research/nist-standard-reference-database-23-reference-fluid-thermodynamic-transport-properties-refprop-versi/%5Cnhttp://www.nist.gov/srd/upload/REFPROP9.pdf
41.
Qureshi
,
B. A.
, and
Zubair
,
S. M.
,
2011
, “
Performance Degradation of a Vapor Compression Refrigeration System Under Fouled Conditions
,”
Int. J. Refrig.
,
34
(
4
), pp.
1016
1027
.
42.
Xu
,
X.
, and
Clodic
,
D.
,
1992
, “
Exergy Analysis on a Vapor Compression Refrigerating System Using R12, R134a, and R290 As Refrigerants
,”
International Refrigeration Air-Conditioning Conference
, pp.
231
240
. http://docs.lib.purdue.edu/iracc
43.
Aprea
,
C.
,
Greco
,
A.
, and
Maiorino
,
A.
,
2013
, “
The Substitution of R134a With R744: An Exergetic Analysis Based on Experimental Data
,”
Int. J. Refrig.
,
36
(
8
), pp.
2148
2159
.
44.
Grondzik
,
W. T.
,
2007
,
Air-Conditioning System Design Manual
,
Elsevier
,
New York
.
45.
Kasera
,
S.
, and
Bhaduri
,
S. C.
,
2017
, “
Performance of R407C As an Alternate to R22: A Review
,”
Energy Procedia
,
109
, pp.
4
10
.
46.
Paradeshi
,
L.
,
Mohanraj
,
M.
,
Srinivas
,
M.
, and
Jayaraj
,
S.
,
2018
, “
Exergy Analysis of Direct-Expansion Solar-Assisted Heat Pumps Working With R22 and R433A
,”
J. Therm. Anal. Calorim.
,
134
(
3
), pp.
2223
2237
.
47.
Jain
,
V.
,
Kachhwaha
,
S. S.
, and
Mishra
,
R. S.
,
2011
, “
Comparative Performance Study of Vapor Compression Refrigeration System With R22/R134a/R410A/R407C/M20
,”
Int. J. Energy Environ.
,
2
(
2
), pp.
297
310
.
48.
Hakkaki-Fard
,
A.
,
Aidoun
,
Z.
, and
Ouzzane
,
M.
,
2014
, “
Applying Refrigerant Mixtures With Thermal Glide in Cold Climate Air-Source Heat Pumps
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
714
722
.
You do not currently have access to this content.