Abstract

Sensible energy storage systems can be integrated with domestic and industrial systems to fulfill energy needs in the absence of an energy source. The present study experimentally investigates the thermal characteristics of a sensible energy storage system with multiple cylindrical passages during the charging and discharging cycles. Transient temperature distribution, energy storage, energy release, and charging/discharging energy efficiency are evaluated by varying the mass flowrate of air from 0.022 to 0.031 kg/s and inlet air temperature from 45 to 75 °C. The maximum charging energy efficiency of 81.3% was found at 55 °C inlet temperature and 0.031 kg/s of the mass flowrate of air. The maximum discharging energy efficiency is found to be 74.3% corresponding to 45 °C inlet temperature and 0.031 kg/s of the mass flowrate of air.

References

1.
Li
,
G.
,
2016
, “
Sensible Heat Thermal Storage Energy and Exergy Performance Evaluations
,”
Renewable Sustainable Energy Rev.
,
53
, pp.
897
923
.
2.
Tao
,
Y. B.
, and
He
,
Y. L.
,
2018
, “
A Review of Phase Change Material and Performance Enhancement Method for Latent Heat Storage System
,”
Renewable Sustainable Energy Rev.
,
93
, pp.
245
259
.
3.
Alva
,
G.
,
Liu
,
L.
,
Huang
,
X.
, and
Fang
,
G.
,
2017
, “
Thermal Energy Storage Materials and Systems for Solar Energy Applications
,”
Renewable Sustainable Energy Rev.
,
68
(
1
), pp.
693
706
.
4.
Alva
,
G.
,
Lin
,
Y.
, and
Fang
,
G.
,
2018
, “
An Overview of Thermal Energy Storage Systems
,”
Energy
,
144
, pp.
341
378
.
5.
Heier
,
J.
,
Bales
,
C.
, and
Martin
,
V.
,
2015
, “
Combining Thermal Energy Storage with Buildings—A Review
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
1305
1325
.
6.
Fleuchaus
,
P.
,
Godschalk
,
B.
,
Stober
,
I.
, and
Blum
,
P.
,
2018
, “
Worldwide Application of Aquifer Thermal Energy Storage—A Review
,”
Renewable Sustainable Energy Rev.
,
94
, pp.
861
876
.
7.
Tatsidjodoung
,
P.
,
Le Pierrès
,
N.
, and
Luo
,
L.
,
2013
, “
A Review of Potential Materials for Thermal Energy Storage in Building Applications
,”
Renewable Sustainable Energy Rev.
,
18
, pp.
327
349
.
8.
Novo
,
A. V.
,
Bayon
,
J. R.
,
Castro-Fresno
,
D.
, and
Rodriguez-Hernandez
,
J.
,
2010
, “
Review of Seasonal Heat Storage in Large Basins: Water Tanks and Gravel–Water Pits
,”
Appl. Energy
,
87
(
2
), pp.
390
397
.
9.
Schmit
,
H.
,
Pfeffer
,
W.
,
Rathgeber
,
C.
, and
Hiebler
,
S.
,
2016
, “
Calorimetric Investigation of the Concentration Dependent Enthalpy Change Around Semicongruent Melting CaCl2.6H2O
,”
Thermochim. Acta
,
635
, p.
26e33
.
10.
Cabeza
,
L. F.
,
Svensson
,
G.
,
Hiebler
,
S.
, and
Mehling
,
H.
,
2003
, “
Thermal Performance of Sodium Acetate Trihydrate Thickened With Different Materials as Phase Change Energy Storage Material
,”
Appl. Therm. Eng.
,
23
(
13
), p.
1697e704
.
11.
Mehling
,
H.
, and
Cabeza
,
L. F.
,
2008
,
Heat and Cold Storage with PCM
,
Springer
,
Berlin
.
12.
Pielichowska
,
K.
, and
Pielichowski
,
K.
,
2014
, “
Phase Change Materials for Thermal Energy Storage
,”
Prog. Mater. Sci.
,
65
, p.
67e123
.
13.
Elouali
,
A.
,
Kousksou
,
T.
,
El Rhafiki
,
T.
,
Hamdaoui
,
S.
, and
Zeraouli
,
Y.
,
2019
, “
Physical Models for Packed Bed: Sensible Heat Storage Systems
,”
J. Energy Storage
,
23
, pp.
69
78
.
14.
Cascetta
,
M.
,
Cau
,
G.
,
Puddu
,
P.
, and
Serra
,
F.
,
2014
, “
Numerical Investigation of a Packed Bed Thermal Energy Storage System With Different Heat Transfer Fluids
,”
Energy Procedia
,
45
, pp.
598
607
.
15.
Zanganeh
,
G.
,
Pedretti
,
A.
,
Haselbacher
,
A.
, and
Steinfeld
,
A.
,
2015
, “
Design of Packed Bed Thermal Energy Storage Systems for High-Temperature Industrial Process Heat
,”
Appl. Energy
,
137
, pp.
812
822
.
16.
Zhao
,
B.-c.
,
Cheng
,
M.-s.
,
Liu
,
C.
, and
Dai
,
Z.-m.
,
2018
, “
System-Level Performance Optimization of Molten-Salt Packed-Bed Thermal Energy Storage for Concentrating Solar Power
,”
Appl. Energy
,
226
, pp.
225
239
.
17.
Vigneshwaran
,
K.
,
Sodhi
,
G. S.
,
Muthukumar
,
P.
,
Guha
,
A.
, and
Senthilmurugan
,
S.
,
2019
, “
Experimental and Numerical Investigations on High Temperature Cast Steel Based Sensible Heat Storage System
,”
Appl. Energy
,
251
, p.
113322
.
18.
Prasad
,
L.
, and
Muthukumar
,
P.
,
2013
, “
Design and Optimization of Lab-Scale Sensible Heat Storage Prototype for Solar Thermal Power Plant Application
,”
Sol. Energy
,
97
, pp.
217
229
.
19.
Rao
,
C. R. C.
,
Niyas
,
H.
, and
Muthukumar
,
P.
,
2018
, “
Performance Tests on Lab–Scale Sensible Heat Storage Prototypes
,”
Appl. Therm. Eng.
,
129
, pp.
953
967
.
20.
Agrawal
,
P.
,
Gautam
,
A.
,
Kunwar
,
A.
,
Kumar
,
M.
, and
Chamoli
,
S.
,
2018
, “
Performance Assessment of Heat Transfer and Friction Characteristics of a Packed Bed Heat Storage System Embedded With Internal Grooved Cylinders
,”
Sol. Energy
,
161
, pp.
148
158
.
21.
Özrahat
,
E.
, and
Ünalan
,
S.
,
2017
, “
Thermal Performance of a Concrete Column as a Sensible Thermal Energy Storage Medium and a Heater
,”
Renewable Energy
,
111
, pp.
561
579
.
22.
Kunwar
,
A.
,
Kumar
,
M.
,
Gupta
,
A.
,
Mangrulkar
,
C. K.
, and
Chamoli
,
S.
,
2019
, “
Experimental Investigation of a Packed-Bed Thermal Energy Storage System Fitted With Perforated Cylindrical Elements
,”
Heat Mass Transfer
,
55
(
10
), pp.
2723
2737
.
23.
Kumar
,
R.
,
Pathak
,
A. K.
,
Kumar
,
M.
, and
Patil
,
A. K.
,
2021
, “
Experimental Study of Multi Tubular Sensible Heat Storage System Fitted With Wire Coil Inserts
,”
Renewable Energy
,
164
, pp.
1244
1253
.
24.
ELSihy
,
E. S.
,
Wang
,
X.
,
Xu
,
C.
, and
Du
,
X.
,
2020
, “
Investigation on Simultaneous Charging and Discharging Process of Water Thermocline Storage Tank Employed in Combined Heat and Power Units
,”
ASME. J. Energy Resour. Technol.
,
143
(
3
), p.
032001
.
25.
Helmns
,
D.
,
Carey
,
V. P.
,
Kumar
,
N.
,
Banerjee
,
D.
,
Muley
,
A.
, and
Stoia
,
M.
,
2020
, “
Comparison of Model Predictions and Performance Test Data for a Prototype Thermal Energy Storage Module
,”
ASME. J. Energy Resour. Technol.
,
143
(
2
), p.
022001
.
26.
Hassan
,
M. A. M.
,
Abdel-Hameed
,
H. M.
, and
Mahmoud
,
O. E.
,
2018
, “
Experimental Investigation of the Effect of Nanofluid on Thermal Energy Storage System Using Clathrate
,”
ASME. J. Energy Resour. Technol.
,
141
(
4
), p.
042003
.
27.
Kalapala
,
L.
, and
Devanuri
,
J. K.
,
2020
, “
Energy and Exergy Analyses of Latent Heat Storage Unit Positioned at Different Orientations—An Experimental Study
,”
Energy
,
194
, p.
116924
.
You do not currently have access to this content.