Abstract

Twisted Darrieus water turbine is receiving growing attention for small-scale hydropower generation. Accordingly, the need for raised water energy conversion incentivizes researchers to focus on the blade shape optimization of twisted Darrieus turbine. In view of this, experimental analysis has been performed to appraise the efficiency of a spiral Darrieus water rotor in the present work. To better the performance parameters of the studied water rotor with twisted blades, three novel blade shapes, namely U-shaped blade, V-shaped blade, and W-shaped blade, have been numerically tested using a computational fluid dynamics three-dimensional numerical model. The maximum power coefficient of the Darrieus rotor reaches 0.17 at a 0.63 tip-speed ratio using twisted blades. Using V-shaped blades, the maximum power coefficient has risen to 0.185. The current study could be practically applied to provide more effective employment of twisted Darrieus turbines and to improve the generated power from flowing water such as river streams, tidal currents, or other man-made water canals.

References

1.
Nojavan
,
S.
,
Qesmati
,
H.
,
Zare
,
K.
, and
Seyyedi
,
H.
,
2014
, “
Large Consumer Electricity Acquisition Considering Time-of-Use Rates Demand Response Programs
,”
Arabian J. Sci. Eng.
,
39
(
12
), pp.
8913
8923
.
2.
Vural
,
G.
,
2020
, “
Renewable and Non-Renewable Energy-Growth Nexus: A Panel Data Application for the Selected Sub-Saharan African Countries
,”
Resour. Policy
,
65
, p.
101568
.
3.
Huang
,
J.
,
Li
,
W.
,
Guo
,
L.
,
Hu
,
X.
, and
Hall
,
J. W.
,
2020
, “
Renewable Energy and Household Economy in Rural China
,”
Renewable Energy
,
155
, pp.
669
676
.
4.
Menegaki
,
A. N.
,
2011
, “
Growth and Renewable Energy in Europe: A Random Effect Model With Evidence for Neutrality Hypothesis
,”
Energy Econ.
,
33
(
2
), pp.
257
263
.
5.
Andini
,
C.
,
Cabral
,
R.
, and
Santos
,
J. E.
,
2019
, “
The Macroeconomic Impact of Renewable Electricity Power Generation Projects
,”
Renewable Energy
,
131
, pp.
1047
1059
.
6.
Tewdwr-Jones
,
M.
,
2015
, “
Mark Tewdwr-Jones—United Kingdom
,”
disP. Plan. Rev.
,
51
(
1
), pp.
84
85
.
7.
Munro
,
P.
,
Horst
,
G. V. D.
, and
Healya
,
S.
,
2017
, “
Energy Justice for All? Rethinking Sustainable Development Goal 7 Through Struggles Over Traditional Energy Practices in Sierra Leone
,”
Energy Policy
,
105
, pp.
635
641
.
8.
Ostos
,
I.
,
Ruiz
,
I.
,
Gajic
,
M.
,
Gómez
,
W.
,
Bonilla
,
A.
, and
Collazos
,
C.
,
2019
, “
A Modified Novel Blade Configuration Proposal for a More Efficient VAWT Using CFD Tools
,”
Energy Convers. Manage.
,
180
, pp.
733
746
.
9.
Nunes
,
M. M.
,
Mendes
,
R. C. F.
,
Oliveira
,
T. F.
, and
Junior
,
A. C. P. B.
,
2019
, “
An Experimental Study on the Diffuser-Enhanced Propeller Hydrokinetic Turbines
,”
Renewable Energy
,
133
, pp.
840
848
.
10.
Saini
,
G.
, and
Saini
,
R. P.
,
2020
, “
Comparative Investigations for Performance and Self-Starting Characteristics of Hybrid and Single Darrieus Hydrokinetic Turbine
,”
Energy Rep.
,
6
, pp.
96
100
.
11.
Baratchi
,
F.
,
Jeans
,
T. L.
, and
Gerber
,
A. G.
,
2020
, “
Assessment of Blade Element Actuator Disk Method for Simulations of Ducted Tidal Turbines
,”
Renewable Energy
,
154
, pp.
290
304
.
12.
Niebuhr
,
C. M.
,
Dijk
,
M. V.
,
Neary
,
V. S.
, and
Bhagwan
,
J. N.
,
2019
, “
A Review of Hydrokinetic Turbines and Enhancement Techniques for Canal Installations: Technology, Applicability and Potential
,”
Renewable Sustainable Energy Rev.
,
113
, p.
109240
.
13.
Mohamed
,
A. B.
,
Bear
,
C.
,
Bear
,
M.
, and
Korobenko
,
A.
,
2020
, “
Performance Analysis of Two Vertical-Axis Hydrokinetic Turbines Using Variational Multiscale Method
,”
Comput. Fluids
,
200
, p.
104432
.
14.
Guerra
,
M.
, and
Thomson
,
J.
,
2019
, “
Wake Measurements From a Hydrokinetic River Turbine
,”
Renewable Energy
,
139
, pp.
483
495
.
15.
Salleh
,
M. B.
,
Kamaruddin
,
N. M.
, and
Kassim
,
Z. M.
,
2019
, “
Savonius Hydrokinetic Turbines for a Sustainable River-Based Energy Extraction: A Review of the Technology and Potential Applications in Malaysia
,”
Sustain. Energy Technol. Assess.
,
36
, p.
100554
.
16.
Mosbahi
,
M.
,
Ayadi
,
A.
,
Chouaibi
,
Y.
,
Driss
,
Z.
, and
Tucciarelli
,
T.
,
2020
, “
Experimental and Numerical Investigation of the Leading Edge Sweep Angle Effect on the Performance of a Delta Blades Hydrokinetic Turbine
,”
Renewable Energy
,
162
, pp.
1087
1103
.
17.
Kirke
,
B. K.
, and
Lazauskas
,
L.
,
2011
, “
Limitations of Fixed Pitch Darrieus Hydrokinetic Turbines and the Challenge of Variable Pitch
,”
Renewable Energy
,
36
(
3
), pp.
893
897
.
18.
Patel
,
V.
,
Eldho
,
T. I.
, and
Prabhu
,
S. V.
,
2017
, “
Experimental Investigations on Darrieus Straight Blade Turbine for Tidal Current Application and Parametric Optimization for Hydro Farm Arrangement
,”
Int. J. Mar. Energy
,
17
, pp.
110
135
.
19.
Talukdar
,
P. K.
,
Sardar
,
A.
,
Kulkarni
,
V.
, and
Saha
,
U. K.
,
2018
, “
Parametric Analysis of Model Savonius Hydrokinetic Turbines Through Experimental and Computational Investigations
,”
Energy Convers. Manage.
,
158
, pp.
36
49
.
20.
Fertahi
,
S. D.
,
Bouhal
,
T.
,
Rajad
,
O.
,
Kousksou
,
T.
,
Arid
,
A.
,
El Rhafiki
,
T.
,
Jamil
,
A.
, and
Benbassou
,
A.
,
2018
, “
CFD Performance Enhancement of a Low Cut-In Speed Current Vertical Tidal Turbine Through the Nested Hybridization of Savonius and Darrieus
,”
Energy Convers. Manage.
,
169
, pp.
266
278
.
21.
Patel
,
V.
,
Eldho
,
T. I.
, and
Prabhu
,
S. V.
,
2019
, “
Velocity and Performance Correction Methodology for Hydrokinetic Turbines Experimented With Different Geometry of the Channel
,”
Renewable Energy
,
131
, pp.
1300
1317
.
22.
Bachant
,
P.
, and
Wosnik
,
M.
,
2015
, “
Performance Measurements of Cylindrical- and Spherical-Helical Cross-Flow Marine Hydrokinetic Turbines, With Estimates of Exergy Efficiency
,”
Renewable Energy
,
74
, pp.
318
325
.
23.
Marsh
,
P.
,
Ranmuthugala
,
D.
,
Penesis
,
I.
, and
Thomas
,
G.
,
2015
, “
Three-Dimensional Numerical Simulations of Straight-Bladed Vertical Axis Tidal Turbines Investigating Power Output, Torque Ripple and Mounting Forces
,”
Renewable Energy
,
83
, pp.
67
77
.
24.
Velasco
,
D.
,
Mejia
,
O. L.
, and
Laín
,
S.
,
2017
, “
Numerical Simulations of Active Flow Control With Synthetic Jets in a Darrieus Turbine
,”
Renewable Energy
,
113
, pp.
129
140
.
25.
Mosbahi
,
M.
,
Ayadi
,
A.
,
Mabrouki
,
I.
,
Driss
,
Z.
,
Tucciarelli
,
T.
, and
Abid
,
M. S.
,
2019
, “
Effect of the Converging Pipe on the Performance of a Lucid Spherical Rotor
,”
Arabian J. Sci. Eng.
,
44
(
2
), pp.
1583
1600
.
26.
Saini
,
G.
, and
Saini
,
R. P.
,
2018
, “
A Numerical Analysis to Study the Effect of Radius Ratio and Attachment Angle on Hybrid Hydrokinetic Turbine Performance
,”
Energy Sustainable Dev.
,
47
, pp.
94
106
.
27.
Mosbahi
,
M.
,
Ayadi
,
A.
,
Chouaibi
,
Y.
,
Driss
,
Z.
, and
Tucciarelli
,
T.
,
2019
, “
Performance Study of a Helical Savonius Hydrokinetic Turbine With a New Deflector System Design
,”
Energy Convers. Manage.
,
194
, pp.
55
74
.
28.
Kumar
,
A.
, and
Saini
,
R. P.
,
2017
, “
Performance Analysis of a Single Stage Modified Savonius Hydrokinetic Turbine Having Twisted Blades
,”
Renewable Energy
,
113
, pp.
461
478
.
29.
Kumar
,
A.
, and
Saini
,
R. P.
,
2017
, “
Performance Analysis of a Savonius Hydrokinetic Turbine Having Twisted Blades
,”
Renewable Energy
,
108
, pp.
502
522
.
30.
Mosbahi
,
M.
,
Ayadi
,
A.
,
Chouaibi
,
Y.
,
Driss
,
Z.
, and
Tucciarelli
,
T.
,
2020
, “
Performance Improvement of a Novel Combined Water Turbine
,”
Energy Convers. Manage.
,
205
, p.
112473
.
You do not currently have access to this content.