Abstract

Tests were performed in a 0.1-m diameter small circulating fluidized bed (SCFB) and 0.3 m diameter cold flow circulating fluidized bed (CFCFB) riser systems located at the National Energy Technology Laboratory (NETL) to study the effects of riser diameter on the riser hydrodynamics. These tests were performed at solids circulation rates of Gs = 20 and 75 kg/m2 s and superficial gas velocities of Ug = 5.8 and 6.5 m/s using high-density polyethylene (HDPE) pellets with a density of 0.863 g/cm3, particle size range of 600–1400 µm (with a Sauter mean diameter of 871 µm, placing them in the Geldart B classification). Comparisons of riser axial pressure and solids fraction profiles, radial particle velocity profiles, and radial profiles of higher statistical moments and select chaos analysis parameters were considered. The results showed that for a given Ug and Gs, the smaller diameter riser exhibited characteristics associated with more dilute solids flow than that observed in the larger diameter riser. Additionally, the larger diameter riser exhibited a downward flow of solids near the wall under all test conditions, whereas the smaller diameter riser data exhibited little or no indications of solids downflow near the wall. These findings suggest that, from an industrial standpoint, a direct scaleup of small-scale tests cannot readily be accomplished as the solids holdup and the solids velocity profiles in small units (those normally tested in the laboratory) are not similar to those of large units and the performance of large units can therefore not be predicted from small-scale tests.

References

1.
Murphree
,
E. V.
,
Brown
,
C. L.
,
Fischer
,
H. G. M.
,
Gohr
,
E. J.
, and
Sweeney
,
W. J.
,
1943
, “
Fluid Catalyst Process. Catalytic Cracking of Petroleum
,”
Ind. Eng. Chem.
,
35
(
7
), pp.
768
773
.10.1021/ie50403a006
2.
Squires
,
A. M.
,
1985
, “The Story of Fluid Catalytic Cracking: The First ‘Circulating Fluid Bed’”,
Circulating Fluidized Bed Technology I
,
P.
Basu
, ed.,
Pergammon
,
Oxford
, pp.
1
19
.
3.
Kunii
,
D.
, and
Levenspiel
,
O.
,
1969
,
Fluidization Engineering
,
John Wiley & Sons, Inc
,
New York
.
4.
Yerushalmi
,
J.
,
Turner
,
D. H.
, and
Squires
,
A. M.
,
1976
, “
The Fast Fluidized Bed
,”
Ind. Eng. Chem. Process Des. Dev.
,
15
(
1
), pp.
47
53
. 10.1021/i260057a010
5.
Li
,
Y.
, and
Kwauk
,
M.
,
1980
, “The Dynamics of Fast Fluidization”
Fluidization
,
J. R.
Grace
, and
J. M.
Matsen
, eds.,
Springer
,
Boston, MA
.
6.
Hartge
,
E.-U.
,
Li
,
Y.
, and
Werther
,
J.
,
1986
,
Fluidization V
,
K.
Ostergaard
and
A.
Sorensen
, eds.,
Engineering Foundation
,
New York
, pp.
345
352
.
7.
Li
,
J.
,
Tung
,
Y.
, and
Kwauk
,
M.
,
1988
,
Circulating Fluidized Bed Technology II
,
P.
Basu
and
J. F.
Large
, eds.,
Pergamon
,
Oxford
, pp.
193
203
.
8.
Bai
,
D.-R.
,
Jin
,
Y.
,
Yu
,
Q.
, and
Zhu
,
J.-X.
,
1992
, “
The Axial Distribution of the Cross-Sectionally Average Voidage in Fast Fluidized Beds
,”
Powder Technol.
,
71
(
1
), pp.
51
58
.10.1016/0032-5910(92)88003-Z
9.
Mei
,
J. S.
,
Monazam
,
E. R.
, and
Shadle
,
L. J.
,
2006
, “
Flow Regime Study of a Light Material in an Industrial Scale Cold Flow Circulating Fluidized Bed
,”
ASME J. Energy Resour. Technol.
,
128
(
2
), pp.
129
134
.10.1115/1.2199566
10.
Xu
,
G.
,
Nomura
,
K.
,
Nakagawa
,
N.
, and
Kato
,
K.
,
2000
, “
Hydrodynamic Dependence on Riser Diameter for Different Particles in Circulating Fluidized Beds
,”
Powder Technol.
,
113
(
1–2
), pp.
80
87
. 10.1016/S0032-5910(99)00317-4
11.
Yan
,
A.
,
Ball
,
J.
, and
Zhu
,
J.
,
2005
, “
Scale-Up Effect of Riser Reactors (3) Axial and Radial Solids Flux Distribution and Flow Development
,”
Chem. Eng. J.
,
109
(
1–3
), pp.
97
106
. 10.1016/j.cej.2005.03.017
12.
Rhodes
,
M. J.
,
Laussmann
,
F.
,
Villain
,
F.
, and
Geldart
,
D.
,
1988
, “Measurement of Radial and Axial Solids Flux Variations in the Riser of a Circulating Fluidized Bed,”
Circulating Fluidized Bed Technology II
,
P.
Basu
and
J. F.
Large
, eds.,
Pergamon
,
Oxford
, pp.
155
164
.
13.
Herb
,
B.
,
Dou
,
S.
,
Tuzla
,
K.
, and
Chen
,
J.
,
1992
, “
Solid Maxx Fluxes in Circulating Fluidized Beds
,”
Powder Technol.
,
70
(
3
), pp.
197
205
. 10.1016/0032-5910(92)80054-Z
14.
Wang
,
X. S.
,
Gibbs
,
B. M.
, and
Rhodes
,
R. J.
,
1995
,
Fluidized Bed Combustion
,
K. J.
Heinschel
, ed.,
ASME
,
New York
, pp.
663
670
.
15.
van der Meer
,
E. H.
,
Thorpe
,
R. B.
, and
Davidson
,
J. F.
,
1996
,
Circulating Fluidized Bed Technology
,
Pergamon
,
Oxford
, pp.
575
580
.
16.
Brereton
,
C.
, and
Stromberg
,
L.
,
1985
, “Some Aspects of the Fluid Dynamic Behavior of Fast Fluidized Beds,”
Circulating Fluidized Bed Technology I
,
P.
Basu,
ed.,
Pergamon
,
Oxford
, pp.
133
142
.
17.
Tung
,
Y.
,
Li
,
J.
, and
Kwauk
,
M.
,
1988
, “Radial Voidage Profile in a Fast Fluidized Bed,”
Fluidization ‘88: Science and Technology
,
M.
Kwauk
, and
D.
Kunii
, eds.,
Science Press
,
Beijing
, pp.
139
145
.
18.
Zhang
,
W.
,
Tung
,
Y.
, and
Johnsson
,
F.
,
1991
, “
Radial Voidage Profiles in Fast Fluidized Beds of Different Diameters
,”
Chem. Eng. Sci.
,
46
(
12
), pp.
3045
3052
. 10.1016/0009-2509(91)85008-L
19.
Rhodes
,
M. J.
,
Wang
,
X. S.
,
Cheng
,
H.
,
Hirama
,
T.
, and
Gibbs
,
B. M.
,
1992
, “
Similar Profiles of Solids Flux in Circulating Fluidized bed Risers
,”
Chem. Eng. Sci.
,
47
(
7
), pp.
1635
1643
. 10.1016/0009-2509(92)85011-Y
20.
Arena
,
U.
,
Cammarota
,
A.
,
Massimilla
,
L.
, and
Pirozzi
,
D.
,
1988
, “The Hydrodynamic Behavior of Two Circulating Fluidized Bed Units of Different Sizes,”
Circulating Fluidized Bed Technology II
,
P.
Basu
, and
J. F.
Large
, eds.,
Pergamon
,
Oxford
, pp.
223
230
.
21.
Arena
,
U.
,
Malandrino
,
A.
,
Marzocchella
,
A.
, and
Massimilla
,
L.
,
1991
, “Flow Structure in the Risers of Laboratory and Pilot CFB Units,”
Circulating Fluidized Bed Technology III
,
P.
Basu
,
M.
Horio
, and
M.
Hasatani
, eds.,
Pergamon
,
Oxford
, pp.
137
149
.
22.
Reiling
,
V. G.
,
1998
, “Effect of Gas Velocity on Fluid Density of a Group ‘A’ Material,”
Fluidization IX
,
L.-S.
Fan
, and
T. M.
Knowlton
, eds.,
Engineering Foundation
,
New York
, pp.
93
100
.
23.
Breault
,
R. W.
,
Weber
,
J.
, and
Shadle
,
L. J.
,
2019
, “
The Development of a Generalized Riser Flow Regime Map Based upon Higher Moment and Chaotic Statistics Using Electrical Capacitance Volume Tomography (ECVT)
,”
Powder Technol.
, Article in Press. 10.1016/j.powtec.2019.03.036
24.
Monazam
,
E. R.
,
Shadle
,
L. J.
, and
Lawson
,
L. O.
,
2001
, “
A Transient Method for Determination of Saturation Carrying Capacity
,”
Powder Technol.
,
121
(
2–3
), pp.
205
212
. 10.1016/S0032-5910(01)00354-0
25.
Weber
,
J. M.
,
Bobek
,
M. M.
,
Breault
,
R. W.
,
Mei
,
J. S.
, and
Shadle
,
L. J.
,
2018
, “
Investigation of Core-Annular Flow in an Industrial Scale Circulating Fluidized Bed Riser With Electrical Capacitance Volume Tomography (ECVT)
,”
Powder Technol.
,
327
, pp.
524
535
. 10.1016/j.powtec.2017.12.094
You do not currently have access to this content.