Abstract

Drilled cuttings transportation from the bottom hole to the surface to maintain efficient hole cleaning is a challenging issue while drilling vertical, deviated, high angle, and extended reach wells. This is attributed to the huge number of the parameters affecting the ability of the drilling fluid to leave the drilled solids. Drilling fluid rheology, density, and flowrate, hole size, drill pipe size, hole inclination, and rate of penetration are all confirmed experimentally to affect the effectiveness of the drilling mud to lift the fluid and keep a clean hole. Several parameters were developed earlier to account for the hole cleaning conditions, most of these parameters lake to including many of the parameters influencing the hole cleaning conditions. In this study, a new hole cleaning parameter was developed, which is called hole cleaning factor (HCF). The HCF parameter was developed based on the cutting carrying index (CCI) parameter, and it considered the effect of the drilling fluid rheology, density, and flowrate, the hole size, drill pipe size, hole inclination, and rate of penetration to identify the hole cleaning condition. The HCF model was applied in an oil well from North Africa to predict the hole cleaning condition at different 135 points where the depth ranges from 33 to 12,854 ft. The outcomes of the HCF were well correlated with the real-field scenarios, where the crew members faced by erratic torque with differentiation in drilling parameters resulting in worst stuck pipe conditions at the same depths as predicted by the HCF parameter. The developed HCF model will help the drilling engineers to avoid many issues while drilling such as cutting accumulation and drill pipe sticking. The predictability of the HCF model was compared with commercially available software, and the results indicated a good match between the predictability of the HCF model and the commercial software.

References

1.
Van Puymbroeck
,
L.
,
2013
, “
Increasing Drilling Performance Using Hydro-Mechanical Hole Cleaning Devices
,”
SPE Unconventional Gas Conference and Exhibition
,
Muscat
,
Jan. 28–30
, SPE-164005-MS.
2.
Ahmed
,
R. M.
, and
Takach
,
N. E.
,
2009
, “
Fiber Sweeps for Hole Cleaning
,”
SPE Drill. Completion
,
24
(
4
),
564
573
. 10.2118/113746-PA
3.
Cheung
,
E.
,
Takach
,
N.
,
Ozbayoglu
,
E.
,
Majidi
,
R.
, and
Bloys
,
J. B.
,
2012
, “
Improvement of Hole Cleaning Through Fiber Sweeps
,”
SPE Deepwater Drilling and Completions Conference
,
Galveston, TX
,
June 20–21
, SPE-154759-MS.
4.
Gbadamosi
,
A. O.
,
Junin
,
R.
,
Oseh
,
J. O.
,
Agi
,
A.
,
Yekeen
,
N.
,
Abdalla
,
Y.
,
Ogiriki
,
S. O.
, and
Yusuff
,
A. S.
,
2018
, “
Improving Hole Cleaning Efficiency Using Nanosilica in Water-Based Drilling Mud
,”
SPE Nigeria Annual International Conference and Exhibition
,
Lagos
,
Aug. 6–8
, SPE-193401-MS.
5.
Bourgoyne
,
A.T.
, Jr.
,
Chenevert
.,
M.E.
,
Millheim
,
K K.
,
Young
,
F.S.
, Jr.
,
1986
,
Applied Drilling Engineering
,
Society of Petroleum Engineers
,
Houston, TX
.
6.
Rabia
,
H.
,
2001
,
Well Engineering and Construction
,
Entrac Consulting
,
London
.
7.
Hossain
,
M.
, and
Al-Majed
,
A. A.
,
2015
,
Fundamentals of Sustainable Drilling Engineering
,
Scrivener Publishing LLC
.,
Beverly
.
8.
Al Rubaii
,
M. M.
,
2018
, “
A New Robust Approach for Hole Cleaning to Improve Rate of Penetration
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam
,
Apr. 23–26
, SPE-192223-MS.
9.
Abdo
,
J.
, and
Haneef
,
M. D.
,
2011
, “
Nano-Enhanced Drilling Fluids: Pioneering Approach to Overcome Uncompromising Drilling Problems
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
014501
. 10.1115/1.4005244
10.
Taghipour
,
A.
,
Lund
,
B.
,
Ytrehus
,
J. D.
,
Skalle
,
P.
,
Saasen
,
A.
,
Reyes
,
A.
, and
Abdollahi
,
J.
,
2014
, “
Experimental Study of Hydraulics and Cuttings Transport in Circular and Noncircular Wellbores
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022904
. 10.1115/1.4027452
11.
Abbas
,
A. K.
,
Flori
,
R. E.
, and
Alsaba
,
M.
,
2019
, “
Stability Analysis of Highly Deviated Boreholes to Minimize Drilling Risks and Nonproductive Time
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082905
. 10.1115/1.4042733
12.
Chen
,
X.
,
Gao
,
D.
,
Yang
,
J.
,
Luo
,
M.
,
Feng
,
Y.
, and
Li
,
X.
,
2018
, “
A Comprehensive Wellbore Stability Model Considering Poroelastic and Thermal Effects for Inclined Wellbores in Deepwater Drilling
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092903
. 10.1115/1.4039983
13.
Moroni
,
N.
,
Ravi
,
K.
,
Hemphill
,
T.
, and
Sairam
,
P.
,
2009
, “
Pipe Rotation Improves Hole Cleaning and Cement-Slurry Placement: Mathematical Modeling and Field Validation
,”
SPE Offshore Europe Oil & Gas Conference & Exhibition Held in Aberdeen, UK
,
Sep. 8–11
, SPE-124726-MS.
14.
Williams
,
C. E.
, Jr.
, and
Bruce
,
G. H.
,
1951
, “
Carrying Capacity of Drilling Muds
,”
J. Pet. Technol.
,
3
(
4
), pp.
111
120
. 10.2118/951111-G
15.
Hopkin
,
E. A.
,
1967
, “
Factors Affecting Cuttings Removal During Rotary Drilling
,”
J. Pet. Technol.
,
19
(
6
), pp.
807
814
. 10.2118/1697-PA
16.
Hemphill
,
T.
, and
Larsen
,
T. I.
,
1996
, “
Hole-Cleaning Capabilities of Water- and Oil-Based Drilling Fluids: A Comparative Experimental Study
,”
SPE Drill. Completion
,
11
(
4
),
201
207
. 10.2118/26328-PA
17.
Li
,
J.
, and
Walker
,
S.
,
1999
, “
Sensitivity Analysis of Hole Cleaning Parameters in Directional Wells
,”
SPE/ICoTA Coiled Tubing Roundtable
,
Houston, TX
,
May 25–26
, SPE-54498-MS.
18.
Okrajni
,
S.
, and
Azar
,
J. J.
,
1986
, “
The Effects of Mud Rheology on Annular Hole Cleaning in Directional Wells
,”
SPE Drill. Eng.
,
1
(
4
),
297
308
. 10.2118/14178-PA
19.
Burba
,
J. L.
,
Tehan
,
W. F.
,
Hamilton
,
F. D.
,
Holman
,
W. E.
,
Porzucek
,
C.
,
Christenson
,
C. P.
, and
McKenzie
,
J.
,
1990
, “
Field Evaluations Confirm Superior Benefits of MMLHC Fluid System on Hole Cleaning, Borehole Stability, and Rate of Penetration
,”
SPE/IADC Drilling Conference
,
Houston, TX
,
Feb. 27–Mar. 2
, SPE-19956-MS.
20.
Lim
,
K. M.
, and
Chukwu
,
G. A.
,
1996
, “
Bit Hydraulics Analysis for Efficient Hole Cleaning
,”
SPE Western Regional Meeting
,
Anchorage, AL
,
May 22–24
, SPE-35667-MS.
21.
Adari
,
R. B.
,
Miska
,
S.
,
Kuru
,
E.
,
Bern
,
P.
, and
Saasen
,
A.
,
2000
, “
Selecting Drilling Fluid Properties and Flow Rates For Effective Hole Cleaning in High-Angle and Horizontal Wells
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Oct. 1–4
, SPE-63050-MS.
22.
Cameron
,
C.
,
Helmy
,
H.
, and
Haikal
,
M.
,
2003
, “
Fibrous LCM Sweeps Enhance Hole Cleaning and ROP on Extended Reach Well in Abu Dhabi
,”
Middle East Oil Show
,
Bahrain
,
June 9–12
, SPE-81419-MS.
23.
Kelessidis
,
V. C.
, and
Mpandelis
,
G.
,
2004
, “
Measurements and Prediction of Terminal Velocity of Solid Spheres Falling Through Stagnant Pseudo-Plastic Liquids
,”
J. Power Technol.
,
147
(
1–3
), pp.
117
125
. 10.1016/j.powtec.2004.09.034
24.
Valluri
,
S. G.
,
Miska
,
S. Z.
,
Yu
,
M.
,
Ahmed
,
R. M.
, and
Takach
,
N.
,
2006
, “
Experimental Study of Effective Hole Cleaning Using “Sweeps” in Horizontal Wellbores
,”
SPE Annual Technical Conference and Exhibition
,
San Antonio, TX
,
Sep. 24–27
, SPE-101220-MS.
25.
Bizhani
,
M.
, and
Kuru
,
E.
,
2018
, “
Particle Removal From Sandbed Deposits in Horizontal Annuli Using Viscoelastic Fluids
,”
SPE J.
,
23
(
2
), pp.
256
273
.
26.
Rasi
,
M.
,
1994
, “
Hole Cleaning in Large, High-Angle Wellbores
,”
SPE/IADC Drilling Conference
,
Dallas, TX
,
Feb. 15–18
, SPE-27464-MS.
27.
Iyoho
,
A. W.
,
Horeth
,
J. M.
, and
Veenkant
,
R. L.
,
1987
, “
A Computer Model for Hole-Cleaning Analysis
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Sep. 27–30
, SPE-16694-MS.
28.
Van Dyke
,
K.
,
2000
,
Drilling Fluids
, 1st ed.,
Petroleum Extension Service, Continuing & Extended Education, University of Texas at Austin, in cooperation with International Association of Drilling Contractors, Houston, Tex
,
Austin, TX
.
29.
Tobenna
,
U. C.
,
2010
, “
Hole Cleaning and Hydraulics
,” Master thesis,
University of Stavanger
,
Kjell Arholmsgate, Stavanger, Norway
.
30.
Larsen
,
T. I. F.
,
1990
, “
A Study of the Critical Fluid Velocity in Cuttings Transport for Inclined Wellbores
,” Master thesis,
University of Tulsa
,
Tulsa, OK
.
31.
Abdelgawad
,
K.Z.
,
Elzenary
,
M.
,
Elkatatny
,
S.
,
Mahmoud
,
M.
,
Abdulraheem
,
A.
, and
Patil
,
S.
,
2018
, “
New Approach to Evaluate the Equivalent Circulating Density (ECD) Using Artificial Intelligence Techniques
,”
J. Pet. Explor. Prod. Technol.
,
9
(
2
), pp.
1569
1578
. 10.1007/s13202-018-0572-y
32.
Elkatatny
,
S. M.
,
2016
, “
Determination the Rheological Properties of Invert Emulsion Based Mud on Real Time Using Artificial Neural Network
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam
,
Apr. 25–28
, SPE-182801-MS.
33.
Elkatatny
,
S. A.
, and
Mahmoud
,
M. A.
,
2017
, “
Real Time Prediction of the Rheological Parameters of NaCl Water-Based Drilling Fluid Using Artificial Neural Networks
,”
SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition
,
Dammam
,
Apr. 24–27
, SPE-187976-MS.
34.
Elkatatny
,
S. M.
,
2017
, “
Real Time Prediction of Rheological Parameters of KCl Water-Based Drilling Fluid Using Artificial Neural Networks
,”
Arabian J. Sci. Eng.
,
42
(
4
), pp.
1655
1665
. 10.1007/s13369-016-2409-7
35.
Elkatatny
,
S. M.
,
Zeeshan
,
T.
, and
Mahmoud
,
M. A.
,
2016
, “
Real Time Prediction of Drilling Fluid Rheological Properties Using Artificial Neural Networks Visible Mathematical Model (White Box)
,”
J. Pet. Sci. Eng.
,
146
, pp.
1202
1210
. 10.1016/j.petrol.2016.08.021
You do not currently have access to this content.