Impinging jet heat transfer is a promising method to cool electronic components. In this paper, a numerical study has been carried out to examine the conjugate heat transfer under a confined impinging jet using a plate-fin heat sink as the target plate. Effects of geometric parameters such as fin number, fin height, and fin-to-spacing ratio are examined over a range of jet Reynolds numbers using dielectric fluid FC-72 as the fluid medium. Thermal resistance, pressure drop, and Nusselt number are the main criteria used to evaluate the thermal and fluid dynamic performance of this flow system. Furthermore, the effects of fin height, fin-to-spacing ratio, and jet Reynolds number on impinging jet heat transfer are obtained. The concept of an effective Nusselt number is introduced for computing the heat transfer effectiveness of heat sinks with different fin numbers.

1.
Maveety
,
J. G.
, and
Jung
,
H. H.
, 2000, “
Design of an Optimal Pin-Fin Heat Sink With Air Impingement Cooling
,”
Int. Commun. Heat Mass Transfer
0735-1933,
27
(
2
), pp.
229
240
.
2.
Sasao
,
K.
,
Honma
,
M.
,
Nishihara
,
A.
, and
Atarashi
,
T.
, 2001, “
Numerical Analysis of Impinging Air Flow and Heat Transfer in Plate-Fin Type Heat Sinks
,”
ASME J. Electron. Packag.
1043-7398,
123
, pp.
315
318
.
3.
Brignoni
,
L. A.
, and
Garimella
,
S. V.
, 1999, “
Experimental Optimization of Confined Air Jet Impingement on a Pin Fin Heat Sink
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
22
(
3
), pp.
399
404
.
4.
El-Sheikh
,
H. A.
, and
Garimella
,
S. V.
, 2000, “
Enhancement of Air Jet Impingement Heat Transfer Using Pin-Fin Heat Sinks
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
23
(
2
), pp.
300
308
.
5.
Shah
,
A.
,
Sammakia
,
B.
, and
Srihari
,
H.
, 2002, “
A Numerical Study of the Thermal Performance of an Impingement Heat Sink-Fin Shape Optimization
,”
IEEE International Society Conference on Thermal Phenomena
, pp.
298
306
.
6.
Kondo
,
Y.
,
Matsushima
,
H.
, and
Komatsu
,
T.
, 2000, “
Optimization of Pin-Fin Heat Sinks for Impingement Cooling of Electronic Packages
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
240
246
.
7.
Zheng
,
N.
, and
Wirtz
,
R. A.
, 1999, “
Cylindrical Pin-Fin Fan-Sink Heat Transfer and Pressure Drop Correlations
,”
Fifth ASME/JSME Joint Thermal Engineering Conference, AJTE
, pp.
99
6197
.
8.
Lou
,
Z. Q.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
, 2005, “
Effects of Geometric Parameters on Confined Impinging Jet Heat Transfer
,”
Appl. Therm. Eng.
1359-4311,
25
(
17–18
), pp.
2687
2697
.
9.
Wu
,
S.
,
Mai
,
J.
,
Tai
,
Y. C.
, and
Ho
,
C. M.
, 1999, “
Micro Heat Exchanger by Using MEMS Impinging Jets
,”
Proceedings of the IEEE Microelectromechanical Systems
, pp.
171
176
.
10.
Stefanescu
,
S.
,
Mehregany
,
M.
,
Leland
,
J.
, and
Yerkes
,
K.
, 1999, “
Micro Jet Array Heat Sink for Power Electronics
,”
Proceedings of the IEEE Micro Electro Mechanical Systems, MEMS
, pp.
165
170
.
11.
Shi
,
Y. L.
,
Ray
,
M. B.
, and
Mujumdar
,
A. S.
, 2003, “
Effects of Prandtl Number on Impinging Jet Heat Transfer Under a Semi-Confined Laminar Slot Jet
,”
Int. Commun. Heat Mass Transfer
0735-1933,
30
(
4
), pp.
455
464
.
12.
Garimella
,
S. V.
, and
Eibeck
,
P. A.
, 1992, “
Fluid Dynamic Characteristics of the Flow Over an Array of Large Roughness Elements
,”
Proceedings of the International Society Conference on Thermal Phenomena in Electronic Systems
,
Austin, TX
, pp.
102
109
.
13.
Garimella
,
S. V.
, and
Schlitz
,
D. J.
, 1992, “
Effect of Fin Aspect Ratio on Heat Transfer Enhancement
,”
SAE International Congress and Exposition
,
Detroit, MI
, SAE Paper No. 920547.
14.
2004, FLUENT 6.1 User’s Guide, 1–4, Fluent Inc.
You do not currently have access to this content.