Flip chip assemblies used in electronic packaging consist of three main components (layers): chip, underfill, and substrate. In this paper, the flip chip assembly is represented as a bi-material strip consisting of the chip and underfill. Our analysis is focused on delamination along the chip-underfill interface due to thermal loading. The underfill is modeled as a composite material made of a polymer matrix and silica particles. Interfacial stresses are studied for several particle configurations: cases of one, two, or three particles near the interface and 30 different random particle arrangements. Interfacial fracture is investigated by evaluating the J integral and stress intensity factors. Statistics of random particle arrangements in the underfill are also discussed. The interfacial stress and fracture analyses give the same trends.

1.
Suhir
,
E.
,
1986
, “
Stresses in Bi-Metal Thermostat
,”
ASME J. Appl. Mech.
,
53
, pp.
657
660
.
2.
Suhir
,
E.
,
1989
, “
Interfacial Stresses in Bimaterial Thermostats
,”
ASME J. Appl. Mech.
,
56
, pp.
595
600
.
3.
Kuo
,
A. Y.
,
1989
, “
Thermal Stresses at the Edge of Bimetallic Thermostat
,”
ASME J. Appl. Mech.
,
56
, pp.
585
589
.
4.
Lau
,
J. H.
,
1989
, “
A Note on the Calculation of Thermal Stresses in Electronic Packaging by Finite Element Methods
,”
ASME J. Electron. Packag.
,
111
, pp.
313
320
.
5.
Lee
,
M.
, and
Jasiuk
,
I.
,
1991
, “
Asymptotic Expansions for the Thermal Stresses in Bonded Semi-Infinite Bimaterial Strips
,”
ASME J. Electron. Packag.
,
113
, pp.
173
177
.
6.
Eischen
,
J. W.
,
Chung
,
C.
, and
Kim
,
J. H.
,
1990
, “
Realistic Modeling of Edge Effect Stresses in Bimaterial Elements
,”
ASME J. Electron. Packag.
,
112
, pp.
16
23
.
7.
Rice
,
J. R.
,
1968
, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
,
35
, pp.
379
386
.
8.
Eshelby
,
J. D.
,
1975
, “
The Elastic Energy-Momentum Tensor
,”
J. Elast.
,
5
, pp.
321
35
.
9.
Smelser
,
R. E.
, and
Gurtin
,
M. E.
,
1977
, “
On the J-Integral for Bi-Material Bodies
,”
Int. J. Fract.
,
13
, pp.
382
384
.
10.
Park
,
J. H.
, and
Earmme
,
Y. Y.
,
1986
, “
Application of Conservation Integrals to Interfacial Crack Problems
,”
Mech. Mater.
,
5
, pp.
261
276
.
11.
Sun
,
C. T.
, and
Wu
,
X. X.
,
1996
, “
On the J-Integral in Periodically Layered Composites
,”
Int. J. Fract.
,
77
, pp.
89
100
.
12.
Weichert
,
D.
, and
Schulz
,
M.
,
1993
, “
J-integral Concept for Multi-Phase Materials
,”
Comput. Mater. Sci.
,
1
, pp.
241
248
.
13.
Haddi
,
A.
, and
Weichert
,
D.
,
1996
, “
On the Computation of the J-Integral for Three-Dimensional Geometries in Inhomogeneous Materials
,”
Comput. Mater. Sci.
,
5
, pp.
143
150
.
14.
Haddi
,
A.
, and
Weichert
,
D.
,
1997
, “
Elastic-Plastic J-Integral in Inhomogeneous Materials
,”
Comput. Mater. Sci.
,
8
, pp.
251
260
.
15.
Charalambides
,
P. G.
,
Lund
,
J.
,
Evans
,
A. G.
, and
McMeeking
,
R. M.
,
1989
, “
A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces
,”
ASME J. Appl. Mech.
,
56
, pp.
77
82
.
16.
Hamoush
,
S. A.
, and
Ahmad
,
S. H.
,
1989
, “
Mode I and Mode II Stress Intensity Factors for Interfacial Cracks in Bi-Material Media
,”
Eng. Fract. Mech.
,
33
, pp.
421
427
.
17.
Pao
,
Y. H.
, and
Pan
,
T. Y.
,
1990
, “
Determination of Stress Intensity Factors for Interfacial Cracks in Bimaterial Systems
,”
ASME J. Electron. Packag.
,
112
, pp.
154
161
.
18.
Matos
,
P. P. L.
,
McMeeking
,
R. M.
,
Charalambides
,
P. G.
, and
Drory
,
M. D.
,
1989
, “
A Method for Calculating Stress Intensities in Bimaterial Fracture
,”
Int. J. Fract.
,
40
, pp.
235
254
.
19.
Park
,
J. E.
,
Jasiuk
,
I.
, and
Zubelewicz
,
A.
,
2003
, “
Stresses and Fracture Along the Chip/Underfill Interface in Flip Chip Assemblies
,”
ASME J. Electron. Packag.
125
, pp.
44
52
.
20.
Eshelby
,
J. D.
,
1957
, “
The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems
,”
Proc. R. Soc. London, Ser. A
,
241
, pp.
376
396
.
21.
Shioya
,
S.
,
1967
, “
On a Semi-Infinite Thin Plate With Circular Inclusion Under Uniform Tension
,”
Bull. Jpn. Soc. Mech. Eng.
,
10
, pp.
1
9
.
22.
Richardson
,
M. K.
,
1969
, “
Interference Stress in a Half Plane Containing an Elastic Disk of Same Material
,”
ASME J. Appl. Mech.
,
36
, pp.
128
130
.
23.
Lee
,
M.
,
Jasiuk
,
I.
, and
Tsuchida
,
E.
,
1992
, “
The Sliding Circular Inclusion in an Elastic Half-Plane
,”
ASME J. Appl. Mech.
,
59
, pp.
57
64
.
24.
Al-Ostaz
,
A.
,
Jasiuk
,
I.
, and
Lee
,
M.
,
1998
, “
Circular Inclusion in Half-Plane: Effect of Boundary Conditions
,”
ASCE J. Eng. Mech.
,
124
, pp.
293
299
.
25.
Yu
,
H. Y.
, and
Sanday
,
S. C.
,
1992
, “
Elastic Inhomogeneous Inclusion and Inhomogeneity in Bimaterials
,”
Proc. R. Soc. London, Ser. A
,
439
, pp.
659
667
.
26.
Park, J. E., Jasiuk, I., and Zubelewicz, A., 2000, “Interfacial Stress Analysis in Electronic Packaging Assemblies With Various Effective Properties of Underfill,” Prtoceedings of the SECTAM-XX (ed. H.V. Tippur), Callaway Gardens, Pine Mountain, GA.
27.
Michaelides
,
S.
, and
Sitaraman
,
S. K.
,
1999
, “
Die Cracking and Reliable Die Design for Flip-Chip Assemblies
,”
IEEE Trans. Adv. Packag.
,
22
, pp.
602
613
.
28.
Hanna, C. E., and Sitaraman, S. K., 1999, “Role of Underfill Materials and Thermal Cycling on Die Stresses,” Advances in Electronic Packaging, EEP-Vol. 26-1, InterPACK 99, ASME, pp. 795–801.
29.
Yeh
,
C. P.
,
Zhou
,
W. X.
, and
Wyatt
,
K.
,
1996
, “
Parametric Finite-Element Analysis of Flip-Chip Structures
,”
Int. J. Microcircuits Electron. Packag.
,
19
, pp.
120
127
.
30.
ABAQUS, Version 5.6, 1995, Hibbit, Karlsson & Sorensen, Inc., USA.
31.
Rice
,
J. R.
, and
Sih
,
G. C.
,
1965
, “
Plane Problems of Cracks in Dissimilar Media
,”
ASME J. Appl. Mech.
,
32
, pp.
418
423
.
32.
Rice
,
J. R.
,
1988
, “
Elastic Fracture Mechanics Concepts for Interfacial Cracks
,”
ASME J. Appl. Mech.
,
57
, pp.
98
103
.
33.
Budiansky
,
B.
,
Hutchinson
,
J. W.
, and
Lambropoulos
,
J. C.
,
1983
, “
Continuum Theory of Dilatant Transformation Toughening in Ceramics
,”
Int. J. Solids Struct.
,
19
, pp.
337
355
.
34.
McMeeking
,
R. M.
, and
Evans
,
A. G.
,
1982
, “
Mechanics of Transformation Toughening in Brittle Materials
,”
J. Am. Ceram. Soc.
,
65
, pp.
242
246
.
35.
Park, J. E., 2001, “Micromechanics-Based Interfacial Stress Analysis and Fracture in Electronic Packaging Assemblies With Heterogeneous Underfill,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA.
36.
Timoshenko, S. P., and Goodier, J. N., 1978, Theory of Elasticity, McGraw-Hill, New York, NY.
You do not currently have access to this content.