This article is a principle-based review of a growing body of fundamental research that documents the opportunity for optimizing geometrically the cooling of spaces (e.g., electronics packages) that generate heat volumetrically. The chief result of geometric optimization is the identification of an optimal internal structure—optimal spacings between components (e.g., plates and fins), optimal sizes and aspect ratios for cooling channels, and optimal frequencies for pulsating flows. The origin of these optimal geometric features—the construction of the system—lies in the global effort to use every infinitesimal volume to the maximum, i.e., to pack the volume not only with the most heat generating components, but also with the ‘most’ coolant, in such a way that every fluid packet is engaged effectively in cooling. The optimal aspect ratio for ducts with forced and natural convection corresponds to the special geometry and flow conditions where boundary layers meet just as the coolant exits the channel. This “constructal” design principle is illustrated by several classes of examples: laminar forced and natural convection, and various internal arrangements (parallel plates, staggered plates, cylinders in cross flow, square pins with impinging flow). General trends (scaling laws) of optimal geometric form are revealed by the optimal-structure results, this, in spite of the diversity of the optimized configurations.

1.
Bejan, A., 2000, Shape and Structure, from Engineering to Nature, Cambridge University Press, Cambridge, UK.
2.
Yovanovich, M. M., 1987, “On the Effect of Shape, Aspect Ratio and Orientation upon Natural Convection from Isothermal Bodies of Complex Shape,” ASME HTD-Vol. 82, pp. 121–129.
3.
Yovanovich, M. M., 1988, “General Expression for Forced Convection Heat and Mass Transfer from Isopotential Spheroids,” AIAA Paper 88-0743, 26th AIAA Aerospace Sciences Meeting, Reno, NV, January 11–14.
4.
Refai Ahmed, G., and Yovanovich, M. M., 1994, “Approximate Solution of Forced Convection Heat Transfer from Isothermal Simple Body Shapes,” AIAA Paper 94-1971, 6th AIAA/ASME Joint Thermophysics Heat Transfer Conference, Colorado Springs, Colorado, June 20–23.
5.
Peterson
,
G. P.
, and
Ortega
,
A.
,
1990
, “
Thermal Control of Electronic Equipment and Devices
,”
Adv. Heat Transfer
,
20
, pp.
181
314
.
6.
Moffat, R. J., and Ortega, A., 1988, “Direct Air Cooling of Electronic Components,” Advances in Thermal Modeling of Electronic Components and Systems, Vol. 1, eds., A. Bar-Cohen and A. D. Kraus, Hemisphere, New York, pp. 129–282.
7.
Nakayama, W., Matsushima, H., and Goel, P., 1988, “Forced Convective Heat Transfer from Arrays of Finned Packages,” Cooling Technology for Electronic Equipment, ed., W. Aung, Hemisphere, New York, pp. 195–210.
8.
Matsushima
,
H.
,
Yanagida
,
T.
, and
Kondo
,
Y.
,
1992
, “
Algorithm for Predicting the Thermal Resistance of Finned LSI Packages Mounted on a Circuit Board
,”
Heat Transfer-Jpn. Res.
,
21
, pp.
504
517
.
9.
Li
,
W.
,
Kakac
,
S.
,
Hatay
,
F. F.
, and
Oskay
,
R.
,
1993
, “
Experimental Study of Unsteady Forced Convection in a Duct with and without Arrays of Block-Like Electronic Components
,”
Waerme- Stoffuebertrag.
,
28
, pp.
69
79
.
10.
Kim, S. J., and Lee, S. W., eds., 1996, Air Cooling Technology for Electronic Equipment, CRC Press, Boca Raton, FL.
11.
Anand
,
N. K.
,
Kim
,
S. H.
, and
Fletcher
,
L. S.
,
1992
, “
The Effect of Plate Spacing on Free Convection between Heated Parallel Plates
,”
ASME J. Heat Transfer
,
114
, pp.
515
518
.
12.
Kim
,
S. H.
, and
Anand
,
N. K.
,
1994
, “
Laminar Developing Flow and Heat Transfer between a Series of Parallel Plates with Surface Mounted Discrete Heat Sources
,”
Int. J. Heat Mass Transf.
,
37
, pp.
2231
2244
.
13.
Kim
,
S. H.
, and
Anand
,
N. K.
,
1994
, “
Turbulent Heat Transfer between a Series of Parallel Plates with Surface-Mounted Discrete Heat Sources
,”
ASME J. Heat Transfer
,
116
, pp.
577
587
.
14.
Bejan, A., 1984, Convection Heat Transfer, Wiley, New York, p. 157, problem 11.
15.
Bar Cohen
,
A.
, and
Rohsenow
,
W. M.
,
1984
, “
Thermally Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates
,”
ASME J. Heat Transfer
,
106
, pp.
116
123
.
16.
Ledezma
,
G. A.
, and
Bejan
,
A.
,
1997
, “
Optimal Geometric Arrangement of Staggered Vertical Plates in Natural Convection
,”
ASME J. Heat Transfer
,
119
, pp.
700
708
.
17.
Bejan
,
A.
,
Fowler
,
A. J.
, and
Stanescu
,
G.
,
1995
, “
The Optimal Spacing between Horizontal Cylinders in a Fixed Volume Cooled by Natural Convection
,”
Int. J. Heat Mass Transf.
,
38
, pp.
2047
2055
.
18.
Bejan
,
A.
, and
Sciubba
,
E.
,
1992
, “
The Optimal Spacing of Parallel Plates Cooled by Forced Convection
,”
Int. J. Heat Mass Transf.
,
35
, pp.
3259
3264
.
19.
Mereu
,
S.
,
Sciubba
,
E.
, and
Bejan
,
A.
,
1993
, “
The Optimal Cooling of a Stack of Heat Generating Boards with Fixed Pressure Drop, Flow Rate or Pumping Power
,”
Int. J. Heat Mass Transf.
,
36
, pp.
3677
3686
.
20.
Petrescu
,
S.
,
1994
, “
Comments on the Optimal Spacing of Parallel Plates Cooled by Forced Convection
,”
Int. J. Heat Mass Transf.
,
37
, p.
1283
1283
.
21.
Bhattacharjee, S., and Grosshandler, W. L., 1988, “The Formation of a Wall Jet Near a High Temperature Wall under Microgravity Environment,” ASME HTD-Vol. 96, pp. 711–716.
22.
Fowler
,
A. J.
,
Ledezma
,
G. A.
, and
Bejan
,
A.
,
1997
, “
Optimal Geometric Arrangement of Staggered Plates in Forced Convection
,”
Int. J. Heat Mass Transf.
,
40
, pp.
1795
1805
.
23.
Bejan
,
A.
,
1995
, “
The Optimal Spacings for Cylinders in Crossflow Forced Convection
,”
ASME J. Heat Transfer
,
117
, pp.
767
770
.
24.
Stanescu
,
G.
,
Fowler
,
A. J.
, and
Bejan
,
A.
,
1996
, “
The Optimal Spacing of Cylinders in Free-Stream Cross-Flow Forced Convection
,”
Int. J. Heat Mass Transf.
,
39
, pp.
311
317
.
25.
Ledezma
,
G.
,
Morega
,
A. M.
, and
Bejan
,
A.
,
1996
, “
Optimal Spacing between Pin Fins with Impinging Flow
,”
ASME J. Heat Transfer
,
118
, pp.
570
577
.
26.
Blasius
,
H.
,
1908
, “
Grenzschichten in Flu¨ssigkeiten mit Kleiner Reibung Z.
,”
Math. Phys.
,
56
, p.
1
1
; also NACA TM 1256.
27.
Pohlhausen
,
E.
,
1921
, “
Der Wa¨rmeaustausch Zwischen Festen Ko¨rpern und Flu¨ssigkeiten Mit Kleiner Reibung und Kleiner Wa¨rmeleitung
,”
Z. Angew. Math. Mech.
,
1
, pp.
115
121
.
28.
Chatwin
,
P. C.
,
1975
, “
On the Longitudinal Dispersion of Passive Contaminant in Oscillatory Flows in Tubes
,”
J. Fluid Mech.
,
71
, pp.
513
527
.
29.
Watson
,
E. J.
,
1983
, “
Diffusion in Oscillatory Pipe Flow
,”
J. Fluid Mech.
,
133
, pp.
233
244
.
30.
Kurzweg
,
U. H.
, and
Zhao
,
L. D.
,
1984
, “
Heat Transfer by High-Frequency Oscillations: a New Hydrodynamic Technique for Achieving Large Effective Thermal Conductivities
,”
Phys. Fluids
,
27
, pp.
2624
2627
.
31.
Kurzweg
,
U. H.
,
1985
, “
Enhanced Heat Conduction in Oscillating Viscous Flows within Parallel-Plate Channels
,”
J. Fluid Mech.
,
156
, pp.
291
300
.
32.
Rocha
,
L. A. O.
, and
Bejan
,
A.
,
2001
, “
Geometric Optimization of Periodic Flow and Heat Transfer in a Volume Cooled by Parallel Tubes
,”
ASME J. Heat Transfer
,
123
, pp.
233
239
.
33.
Bejan, A., 1993, Heat Transfer, Wiley, New York.
34.
Heinrich
,
B.
,
1981
, “
The Mechanisms and Energetics of Honeybee Swarm Temperature Regulation
,”
J. Exp. Biol.
,
91
, pp.
25
55
.
35.
Basak
,
T.
,
Rao
,
K. K.
, and
Bejan
,
A.
,
1996
, “
A Model for Heat Transfer in a Honey Bee Swarm
,”
Chem. Eng. Sci.
,
51
, pp.
387
400
.
36.
Bejan
,
A.
,
Ikegami
,
Y.
, and
Ledezma
,
G. A.
,
1998
, “
Theory of Natural Crack Pattern Formation for Fastest Cooling
,”
Int. J. Heat Mass Transf.
,
41
, pp.
1945
1954
.
You do not currently have access to this content.