This study numerically investigates how the geometry of flow pattern influences performance of proton exchange membrane fuel cell (PEMFC), and analyzes how these parameters lead to different distributions of model variables. The investigation focuses on the impact of different bend angle and width of serpentine flow channels and tests how they improve the performance. Three-dimensional simulations are carried out with a steady, two-phase, multicomponent and electrochemical model, using CFD-ACE+, the commercial CFD code. Through simulation with various bend angles and widths, the results show that the combination of 60 deg and 120 deg for flow pattern achieves the highest performance at low operating voltage regime, and flow pattern with wider bend width also produces more current at low operating voltages. Plots of current density indicate that high current density locates at the bending areas of the channels. Therefore, the output current densities of each pattern are improved from the change of bend angle and width.

References

1.
Hontañón
,
E.
,
Escudero
,
M. J.
,
Bautista
,
C.
,
García-Ybarra
,
P. L.
, and
Daza
,
L.
, 2000, “
Optimisation of Flow-Field in Polymer Electrolyte Membrane Fuel Cells Using Computational Fluid Dynamics Techniques
,”
J. Power Sources
,
86
, pp.
363
368
.
2.
Scholta
,
J.
,
Escher
,
G.
,
Zhang
,
W.
,
Küppers
,
L.
,
Jörissen
,
L.
, and
Lehnert
,
W.
, 2006, “
Investigation on the Influence of Channel Geometries on PEMFC Performance
,”
J. Power Sources
,
155
, pp.
66
71
.
3.
Chiang
,
M. S.
, and
Chu
,
H. S.
, 2006, “
Numerical Investigation of Transport Component Design Effect on a Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
,
160
, pp.
340
352
.
4.
Shimpalee
,
S.
,
Greenway
,
S.
, and
Van Zee
,
J. W.
, 2006, “
The Impact of Channel Path Length on PEMFC Flow-Field Design
,”
J. Power Sources
,
160
, pp.
398
406
.
5.
Karvonen
,
S.
,
Hottinen
,
T.
,
Saarinen
,
J.
, and
Himanen
,
O.
, 2006, “
Modeling of Flow Field in Polymer Electrolyte Membrane Fuel Cell
,”
J. Power Sources
,
161
, pp.
876
884
.
6.
Shimpalee
,
S.
, and
Van Zee
,
J. W.
, 2007, “
Numerical Studies on Rib & Channel Dimension of Flow-Field on PEMFC Performance
,”
Int. J. Hydrogen Energy
,
32
, pp.
842
856
.
7.
Jeon
,
D. H.
,
Greenway
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
J. W.
, 2008, “
The Effect of Serpentine Flow-Field Designs on PEM Fuel Cell Performance
,”
Int. J. Hydrogen Energy
,
33
, pp.
1052
1066
.
8.
Fell
,
S.
,
Roth
,
J.
,
Steidle
,
B.
,
Baker
,
D.
,
Gu
,
W.
,
Mathias
,
M.
, and
Schoeneweiss
,
M.
, 2002, VDI Ber., pp. 579–600.
9.
Santarelli
,
M. G.
, and
Torchio
,
M. F.
, 2007, “
Experimental Analysis of the Effects of the Operating Variables on the Performance of a Single PEMFC
,”
Energy Convers. Manage.
,
48
, pp.
40
51
.
10.
Matamoros
,
L.
, and
Brüggemann
,
D.
, 2007, “
Numerical Study on PEMFC’s Geometrical Parameters Under Different Humidifying Conditions
,”
J. Power Sources
,
172
, pp.
253
264
.
11.
Zhang
,
J.
,
Tang
,
Y.
,
Song
,
C.
,
Xia
,
Z.
,
Li
,
H.
,
Wang
,
H.
, and
Zhang
,
J.
, 2008, “
PEM Fuel Cell Relative Humidity (RH) and its Effect on Performance at High Temperatures
,”
Electrochim. Acta
,
53
, pp.
5315
5321
.
12.
Liu
,
X.
,
Guo
,
H.
,
Ye
,
F.
, and
Ma
,
C. F.
, 2007, “
Water Flooding and Pressure Drop Characteristics in Flow Channels of Proton Exchange Membrane Fuel Cells
,”
Electrochim. Acta
,
52
, pp.
3607
3614
.
13.
Le
,
A. D.
, and
Zhou
,
B.
, 2009, “
Fundamental Understanding of Liquid Water Effects on the Performance of a PEMFC With Serpentine-Parallel Channels
,”
Electrochim. Acta
,
54
, pp.
2137
2154
.
14.
Soler
,
J.
,
Hontañón
,
E.
, and
Daza
,
L.
, 2003, “
Electrode Permeability and Flow-Field Configuration: Influence on the Performance of a PEMFC
,”
J. Power Sources
,
118
, pp.
172
178
.
15.
Oosthuizen
,
P. H.
,
Sun
,
L.
, and
McAuley
,
K. B.
, 2005, “
The Effect of Channel-to-Channel Gas Crossover on the Pressure and Temperature Distribution in PEM Fuel Cell Flow Plates
,”
J. Appl. Thermal Engrg
,
25
, pp.
1083
1096
.
16.
Park
,
X.
, and
Li
, 2007, “
An Experimental and Numerical Investigation on the Cross Flow Through Gas Diffusion Layer in a PEM Fuel Cell With a Serpentine Flow Channel
,”
J. Power Sources
,
163
, pp.
853
863
.
17.
Mazumder
,
S.
, and
Cole
,
J. V.
, 2003, “
Rigorous 3-D Mathematical Modeling of PEM Fuel Cells: I. Model Predictions Without Liquid Water Transport
,”
J. Electrochem. Soc.
,
150
, pp.
A1503
A1509
.
18.
Mazumder
,
S.
, and
Cole
,
J. V.
, 2003, “
Rigorous 3-D Mathematical Modeling of PEM Fuel Cells: II. Model Predictions With Liquid Water Transport
,”
J. Electrochem. Soc.
,
150
, pp.
A1510
A1517
.
19.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
, 1991, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
, pp.
2334
2342
.
20.
Um
,
S.
, and
Wang
,
C. Y.
, 2004, “
Three-Dimensional Analysis of Transport and Electrochemical Reactions in Polymer Electrolyte Fuel Cells
,”
J. Power Sources
,
125
, pp.
40
51
.
21.
CFD-ACE+ V2007 User Manual, ESI CFD Inc.
22.
O’Hayre
,
R.
,
Cha
,
S. W.
,
Colella
,
W.
, and
Prinz
,
F. B.
, 2006,
Fuel Cell Fundamentals
,
John Wiley & Sons
,
New York
, pp.
137
163
.
23.
Khandelwal
,
M.
, and
Mench
,
M. M.
, 2006, “
Direct Measurement of Through-Plane Thermal Conductivity and Contact Resistance in Fuel Cell Materials
,”
J. Power Sources
,
161
, pp.
1106
1115
.
24.
Arato
,
E.
,
Pinna
,
M.
, and
Costa
,
P.
, 2006, “
Gas-Phase Mass-Transfer Resistance at PEMFC Electrodes: Part 2. Effects of the Flow Geometry and the Related Pressure Field
,”
J. Power Sources
,
158
, pp.
206
221
.
You do not currently have access to this content.