Nickel was added to a substrate composed of porous Y2O3-stabilized ZrO2 (YSZ) in order to minimize anode damage during redox cycling in segmented-in-series tubular solid oxide fuel cells (SOFCs) with YSZ electrolytes. In this study, the electrical insulating and thermal properties of these materials were evaluated for their suitability as substrates in the tubular SOFCs. When the Ni content was ≤20 vol. %, the porous cermets showed an electrical resistance of ≤67 Ω cm at 900 °C, indicating that the theoretical open circuit voltage for the tubular SOFCs could be achieved. However, the cermet with 20 vol. % Ni was destroyed during the first heating cycle in air because of large isothermal expansion. However, no obvious cracks were observed for cermets with ≤10 vol. % Ni. From the viewpoint of thermogravimetric measurement, this suggests that there are two redox mechanisms for Ni particles in the substrate. They were reduced/oxidized by both the gases and the oxide-ions passing through the YSZ framework. Based on the insulating and thermal properties of the substrate, the optimal composition was found to be approximately 10 vol. % Ni.

References

1.
Tomida
,
K.
,
Yamashita
,
A.
,
Tsukuda
,
H.
,
Kabata
,
T.
,
Ikeda
,
K.
,
Hisatome
,
N.
, and
Yamazaki
,
Y.
, 2009, “
Optimization of Segmented-In-Series Tubular SOFCs With an (La, Sr)CoO3 System Cathode and the Generation Characteristics Under Pressurization
,”
Electrochemistry
,
77
(
12
), pp.
1018
1027
.
2.
Pihlatie
,
M.
,
Ramos
,
T.
, and
Kaiser
,
A.
, 2009, “
Testing and Improving the Redox Stability of Ni-Based Solid Oxide Fuel Cells
,”
J. Power Sources
,
193
, pp.
322
330
.
3.
Faes
,
A.
,
Nakajo
,
A.
,
Hessler-Wyser
,
A.
,
Dubois
,
D.
,
Brisse
,
A.
,
Modena
,
S.
, and
Van herle
,
J.
, 2009, “
Redox Study of Anode-Supported Solid Oxide Fuel Cell
,”
J. Power Sources
,
193
, pp.
55
64
.
4.
Pusz
,
J.
,
Smirnova
,
A.
,
Mohammadi
,
A.
, and
Sammes
,
N. M.
, 2007, “
Fracture Strength of Micro-Tubular Solid Oxide Fuel Cell Anode in Redox Cycling Experiments
,”
J. Power Sources
,
163
, pp.
900
906
.
5.
Mori
,
M.
,
Yamamoto
,
T.
,
Itoh
,
H.
,
Inaba
,
H.
, and
Tagawa
,
H.
, 1998, “
Thermal Expansion of Nickel-Zirconia Anode in Solid Oxide Fuel Cells During Fabrication and Operation
,”
J. Electrochem. Soc.
,
145
(
4
), pp.
1374
1381
.
6.
Takeuchi
,
S.
,
Kusunoki
,
A.
,
Matsubara
,
H.
,
Kikuoka
,
Y.
,
Ohtsuki
,
J.
,
Satomi
,
T.
, and
Shinozaki
,
K.
, 1993, “
A 25 kW Class SOFC Generation System Verification Test
,”
Proceedings of The Third International Symposium on Solid Oxide Fuel Cells, Vol. 93–4,
S. C.
Singhal
and
H.
Iwahara
, eds.,
Electrochemical Society
,
Pennington, NJ
, pp.
678
683
.
7.
Maria
,
O. A.
,
Canfield
,
N. L.
, and
Stevenson
,
J. W.
, 2002, “
Thermal, Electrical, and Electrocatalytical Properties of Lanthanum-Doped Strontium Titanate
,”
Solid State Ionics
,
149
, pp.
21
28
.
8.
Tikekar
,
N. M.
,
Armstrong
,
T. J.
, and
Virkar
,
A. V.
, 2006, “
Reduction and Reoxidation Kinetics of Nickel-Based SOFC Anodes
,”
J. Electrochem. Soc.
,
153
(
4
), pp.
A654
A663
.
9.
Gross
,
M. D.
,
Carver
,
K. M.
,
Deighan
,
M. A.
,
Schenkel
,
A.
,
Smith
,
B. M.
, and
Yee
,
A. Z.
, 2009, “
Redox Stability of SrNbxTi1−xO3-YSZ for Use in SOFC Anodes
,”
J. Electrochem. Soc.
,
156
(
4
), pp.
B540
B545
.
10.
Zhao
,
H.
,
Gao
,
F.
,
Ki
,
X.
,
Zhang
,
C.
, and
Zhao
,
Y.
, 2009, “
Electrical Properties of Yttrium Doped Strontium Titanate With A-Site Deficiency as Potential Anode Materials for Solid Oxide Fuel Cells
,”
Solid State Ionics
,
180
, pp.
193
197
.
11.
Mori
,
H.
,
Omura
,
H.
,
Hisatome
,
N.
,
Ikeda
,
K.
, and
Tomida
,
K.
, 1999, “
Pressured 10 kW Class Module of SOFC
,”
SOFC VI
,
S. C.
Singhal
and
M.
Dokiya
, eds.,
Electrochemical Society
,
Pennington, NJ
, pp.
52
59
.
12.
FIzumi
,
F.
, and
Momma
,
K.
, 2007, “
Three-Dimensional Visualization in Powder Diffraction
,”
Solid State Phenom.
,
130
, pp.
15
20
.
13.
Izumi
,
F.
, and
Ikeda
,
T.
, 2000, “
A Rietveld-Analysis Program RIETAN-98 and its Applications to Zeolites
,”
Mater. Sci. Forum
,
321–324
, pp.
198
205
.
14.
Izumi
,
F.
, and
Ikeda
,
T.
, 2001, “
MEM-Based Structure-Refinement System REMEDY and its Applications
,”
Mater. Sci. Forum
,
378–381
, pp.
59
64
.
15.
Izumi
,
F.
, 1995, “
Rietveld Analysis Programs Rietan and Premos and Special Applications
,”
The Rietveld Method
,
R. A.
Young
, ed.,
Oxford University Press
,
New York
, Chap. 12.
16.
Thompson
,
P.
,
Cox
,
D. E.
, and
Hastings
,
J. B.
, 1987, “
Rietveld Refinement of Debye-Scherrer Synchrotron X-ray Data From Al2O3
,”
J. Appl. Crystallogr.
,
20
, pp.
79
83
.
17.
Williford
,
R. E.
,
Chick
,
L. A.
,
Maupin
,
G. D.
,
Simner
,
S. P.
, and
Stevenson
,
J. W.
, 2003, “
Diffusion Limitations in the Porous Anodes of SOFCs
,”
J. Electrochem. Soc.
,
150
(
8
), pp.
A1067
A1072
.
18.
Yamamoto
,
T.
,
Itoh
,
H.
,
Mori
,
M.
,
Mori
,
N.
,
Watanabe
,
T.
,
Imanishi
,
N.
,
Takeda
,
Y.
, and
Yamamoto
,
O.
, 1996, “
Chemical Stability Between NiO/8YSZ Cermet and Alkaline-Earth Metal Substituted Lanthanum Chromite
,”
J. Power Sources
,
61
, pp.
219
222
.
19.
Kirkpatrick
,
S.
, 1973, “
Percolation and Conduction
,”
Rev. Mod. Phys.
,
45
(
4
), pp.
574
588
.
20.
Dees
,
D. W.
,
Claar
,
T. D.
,
Easler
,
T. E.
,
Fee
,
D. C.
, and
Mrazek
,
F. C.
, 1987, “
Conductivity of Porous Ni/ZrO2-Y2O3 Cermets
,”
J. Electrochem. Soc.
,
134
(
9
), pp.
2141
2146
.
21.
Mori
,
M.
,
Abe
,
T.
,
Itoh
,
H.
,
Yamamoto
,
O.
,
Takeda
,
Y.
, and
Kawahara
,
T.
, 1994, “
Cubic-Stabilized Zirconia and Alumina Composites as Electrolytes in Planar Type Solid Oxide Fuel Cells
,”
Solid State Ionics
,
74
, pp.
157
164
.
22.
Kawashima
,
T.
, and
Hishinuma
,
M.
, 1996, “
Analysis of Electrical Conduction Paths in Ni/YSZ Particulate Composites Using Percolation Theory
,”
Mater. Trans.
,
37
(
7
), pp.
1397
1403
.
23.
Mclachlan
,
D. S.
,
Blaszkiewicz
,
M.
, and
Newnham
,
R. E.
, 1990, “
Electrical Resistivity of Composites
,”
J. Am. Ceram. Soc.
,
73
(
8
), pp.
2187
2203
.
24.
Stauffer
,
D.
, and
Aharony
,
A.
, 1994,
Introduction to Perolation Theory
, 2nd ed.,
CRC Press
,
London
.
25.
Tomida
,
K.
,
Hisatome
,
N.
,
Kabata
,
T.
,
Tsukuda
,
H.
,
Yamashita
,
A.
, and
Yamazaki
,
Y.
, 2009, “
Optimization of Segmented-In-Series Tubular SOFCs Using an La0.5Sr0.5−xCaxMnO3 System Cathode and the Generation Characteristics Under Pressurization
,”
Electrochemistry
,
77
(
5
), pp.
379
387
.
26.
Tomida
,
K.
,
Hisatome
,
N.
,
Kabata
,
T.
,
Tsukuda
,
H.
, and
Yamazaki
,
Y.
, 2009, “
Structural Modification of Segmented-In-Series Tubular SOFCs Using Performance Simulation and the Effect of (Sm,Ce)O2 Cathode Interlayer on the Generation Characteristics Under Pressurization
,”
Electrochemistry
,
77
(
10
), pp.
865
875
.
27.
Obsburn
,
C. M.
, and
Vest
,
R. W.
, 1971, “
Defect Structure and Electrical Properties of Nio—II. Temperatures Below Equilibration
,”
J. Phys. Chem. Solids
,
32
(
6
), pp.
1343
1354
.
28.
Ślebarski
,
A.
,
Matlak
,
M.
, and
Hafez
,
M.
, 1994, “
Structural Study of CeM2 (M=Fe, Co, Ni)
,”
J. Alloys Compd.
,
203
, pp.
35
44
.
29.
Barrett
,
C. A.
, and
Evans
,
E. B.
, 1964, “
Solid Solubility and Lattice Parameter of NiO-MnO
,”
J. Am. Ceram. Soc.
,
47
, pp.
533
533
.
30.
Konya
,
T.
,
Ozawa
,
T.
,
Fujinawa
,
G.
,
Oono
,
A.
, and
Nakamura
,
T.
, 2006, “
Accurate Analysis and Visualization of Crystal Structure of Synthetic Zeolite-A by X-Ray Powder Diffactometry
,”
Bunseki Kagaku
,
55
(
6
), pp.
397
404
.
31.
Hatae
,
T.
,
Matsuzaki
,
Y.
,
Yamashita
,
S.
, and
Yamazaki
,
Y.
, 2009, “
Current Density Dependence of Changes in the Microstructure of SOFC Anodes During Electrochemical Oxidation
,”
Solid State Ionics
,
180
, pp.
1305
1310
.
32.
Rhines
,
F. N.
, and
Connell
,
R. G.
, Jr.
, 1977, “
Role of Grain Growth in the Oxidation of Nickel
,”
J. Electrochem. Soc.
,
124
(
7
), pp.
122
1128
.
You do not currently have access to this content.