On-line control and optimization can improve the efficiency of fuel cell systems, whilst simultaneously ensuring that the operation remains within a safe region. Also, fuel cells are subject to frequent variations in their power demand. This paper investigates the real-time optimization (RTO) of a solid oxide fuel cell (SOFC) stack. An optimization problem maximizing the efficiency subject to operating constraints is defined. Due to inevitable model inaccuracies, the open-loop implementation of optimal inputs evaluated off-line may be suboptimal, or worse, infeasible. Infeasibility can be avoided by controlling the constrained quantities. However, the constraints that determine optimal operation might switch with varying power demand, thus requiring a change in the regulator structure. In this paper, a control strategy that can handle plant-model mismatch and changing constraints in the face of varying power demand is presented and illustrated. The strategy consists in the integration of RTO and model predictive control (MPC). A lumped model of the SOFC is utilized at the RTO level. The measurements are not used to re-estimate the parameters of the SOFC model at different operating points, but to simply adapt the constraints in the optimization problem. The optimal solution generated by RTO is implemented using MPC that uses a step-response model in this case. Simulation results show that near-optimality can be obtained, and constraints are respected despite model inaccuracies and large variations in the power demand.

References

1.
Zhang
,
X. W.
,
Chan
,
S. H.
,
Hob
,
H. K.
,
Li
,
J.
,
Li
,
G.
, and
Feng
,
Z.
, 2008, “
Non-Linear Model Predictive Control Based on the Moving Horizon State Estimation for the Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
33
, pp.
2355
2366
.
2.
Golbert
,
J.
, and
Lewin
,
D. R.
, 2007, “
Model-Based Control of Fuel Cells (2): Optimal Efficiency
,”
J. Power Sources
,
173
, pp.
298
309
.
3.
Aguiar
,
P.
,
Adjiman
,
C.
, and
Brandon
,
N.
, 2005, “
Anode-Supported Intermediate-Temperature Direct Internal Reforming Solid Oxide Fuel Cell II. Model-Based Dynamic Performance and Control
,”
J. Power Sources
,
147
, pp.
136
147
.
4.
Golbert
,
J.
, and
Lewin
,
D. R.
, 2004, “
Model-Based Control of Fuel Cells: (1) Regulatory Control
,”
J. Power Sources
,
135
, pp.
135
151
.
5.
Jurado
,
F.
, 2006, “
Predictive Control of Solid Oxide Fuel Cells Using Fuzzy Ham-Merstein Models
,”
J. Power Sources
,
158
, pp.
245
253
.
6.
Wu
,
X.-J.
,
Zhu
,
X.-J.
,
Cao
,
G.-Y.
, and
Tu
,
H.-Y.
, 2008, “
Predictive Control of SOFC Based on a GA-RBF Neural Network Model
,”
J. Power Sources
,
179
, pp.
232
239
.
7.
Mueller
,
F.
,
Jabbaria
,
F.
,
Gaynor
,
R.
, and
Brouwer
,
J.
, 2007, “
Novel Solid Oxide Fuel Cell System Controller for Rapid Load Following
,”
J. Power Sources
,
172
, pp.
308
323
.
8.
Marlin
,
T. E.
, and
Hrymak
,
A. N.
, 1997, “
Real-Time Operations Optimization of Continuous Processes
,”
AIChE Symposium Series—CPC-V
, Vol.
93
, pp.
156
164
.
9.
Qin
,
S. J.
, and
Badgwell
,
T. A.
, 1997, “
An Overview of Industrial Model Predictive Technology
,”
AIChE Symposium Series—CPC-V
, Vol.
93
, pp.
232
256
.
10.
Chachuat
,
B.
,
Srinivasan
,
B.
, and
Bonvin
,
D.
, 2009, “
Adaptation Strategies for Real-Time Optimization
,”
Comput. Chem. Eng.
,
33
, pp.
1557
1567
.
11.
Maarleveld
,
A.
, and
Rijnsdorp
,
J. E.
,1970, “
Constraint Control on Distillation Columns
,”
Automatica
,
6
, pp.
51
58
.
12.
Chachuat
,
B.
,
Marchetti
,
A.
, and
Bonvin
,
D.
, 2008, “
Process Optimization Via Constraints Adaptation
,”
J. Process Contr.
,
18
, pp.
244
257
.
13.
Forbes
,
J. F.
, and
Marlin
,
T. E.
, 1994, “
Model Accuracy for Economic Optimizing Controllers: The Bias Update Case
,”
Ind. Eng. Chem. Res.
,
33
, pp.
1919
1929
.
14.
Diethelm
,
S.
,
van Herle
,
J.
,
Wuillemin
,
Z.
,
Nakajo
,
A.
,
Autissier
,
N.
, and
Mo-linelli
,
M.
, 2008, “
Impact of Materials and Design on Solid Oxide Fuel Cell Stack Operation
,”
J. Fuel Cell Sci. Technol.
,
5
(
3
), p.
31003
.
15.
Wuillemin
,
Z.
,
Autissier
,
N.
,
Luong
,
M.-T.
,
Van herle
,
J.
, and
Favrat
,
D.
, 2008, “
Modeling and Study of the Influence of Sealing on a Solid Oxide Fuel Cell
,”
J. Fuel Cell Sci. Technol.
,
5
, p.
011016
.
16.
Nakajo
,
A.
,
Wuillemin
,
Z.
,
Van herle
,
J.
, and
Favrat
,
D.
, 2009, “
Simulation of Thermal Stresses in Anode-Supported Solid Oxide Fuel Cell Stacks. Part I: Probability of Failure of the Cells
,”
J. Power Sources
,
193
(
1
), pp.
203
215
.
17.
Lienhard
IV,
J. H.
, and
Lienhard
V,
J. H.
, 2003,
A Heat Transfer Textbook
, 3rd ed.,
Phlogiston Press
,
Cambridge, MA
.
18.
Chan
,
S. H.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
, 2001, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and Its Sensitivity to Change of Cell Component Thickness
,”
J. Power Sources
,
93
, pp.
130
140
.
19.
Park
,
J.-H.
, and
Blumenthal
,
R. N.
, 1989, “
Electronic Transport in 8 Mole Per-cent Y2O3-ZrO2
,”
J. Electrochem. Soc.
,
136
, pp.
2867
2876
.
20.
Larrain
,
D.
,
Van herle
,
J.
, and
Favrat
,
D.
, 2006, “
Simulation of SOFC Stack and Repeat Elements Including Interconnect Degradation and Anode Reoxidation Risk
,”
J. Power Sources
,
161
, pp.
392
403
.
21.
Garcia
,
C. E.
, and
Morari
,
M.
, 1984, “
Optimal Operation of Integrated Processing Systems. Part II: Closed-Loop On-Line Optimizing Control
,”
AIChE J.
,
30
(
2
), pp.
226
234
.
22.
Maciejowski
,
J. M.
, 2002,
Predictive Control With Constraints
,
Prentice-Hall
,
Harlow, England
.
23.
Marchetti
,
A.
, 2009, “
Modifier-Adaptation Methodology for Real-Time Optimization
,” Ph.D. thesis, No. 4449, Ecole Polytechnique Fédérale de Lausanne.
24.
Marchetti
,
A.
,
Chachuat
,
B.
, and
Bonvin
,
D.
, 2008, “
Real-Time Optimization Via Adaptation and Control of the Constraints
,”
18th European Symposium on Computer Aided Process Engineering
, ESCAPE Vol.
18
, Lyon, France.
25.
Marchetti
,
A.
,
Chachuat
,
B.
, and
Bonvin
,
D.
, 2009, “
Modifier-Adaptation Methodology for Real-Time Optimization
,”
Ind. Eng. Chem. Res.
,
48
, pp.
6022
6033
.
26.
Bunin
,
G.
,
Wuillemin
,
Z.
,
Francois
,
G.
,
Nakajo
,
A.
,
Tsikonis
,
L.
, and
Bonvin
,
D.
, 2010, “
Experimental Real-Time Optimization of a Solid Oxide Fuel Cell Stack Via Constraint Adaptation
,”
23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2010)
,
Lausanne, Switzerland
.
You do not currently have access to this content.