A solid oxide fuel cell unit cell based on a scandia-stabilized zirconia (ScSZ) electrolyte for intermediate temperature operation (below 650°C) was manufactured as an anode-supported unit cell via uniaxial pressing, dip-coating, and screen printing methods. The nanocomposite powders used to improve anode performance were synthesized by selectively coating nanosized NiO particles on ScSZ core particles by the Pechini process. Anode-supported ScSZ electrolytes were fabricated by dip-coating a slurry of Ni-ScSZ composite powder on a die-pressed anode pellet, followed by dip-coating of the electrolyte ScSZ slurry. The lanthanum strontium manganite (LSM)-ScSZ cathode and the samarium doped ceria (SDC) interlayer were formed on the anode-supported ScSZ electrolyte using the screen printing method. The lanthanum strontium cobalt ferrite (LSCF)–SDC cathode was also formed on the SDC interlayer. The anode-supported unit cells designed and prepared in this study had a power density of 0.61Wcm2 at 800°C. Moreover, the unit cell structured by the functional layer and the LSCF cathode demonstrated excellent performance with a power density of 0.49Wcm2 at 650°C.

1.
Zhao
,
F.
, and
Virkar
,
V.
, 2005, “
Dependence of Polarization in Anode-Supported Solid Oxide Fuel Cells on Various Cell Parameters
,”
J. Power Sources
0378-7753,
141
, pp.
79
95
.
2.
Badwal
,
S. P. S.
,
Ciacchi
,
F. T.
, and
Milosevic
,
D.
, 2000, “
Scandia-Zirconia Electrolytes for Intermediate Temperature Solid Oxide Fuel Cell Operation
,”
Solid State Ionics
0167-2738,
136–137
, pp.
91
99
.
3.
Badwal
,
S. P. S.
, 1992, “
Zirconia-Based Solid Electrolytes: Microstructure, Stability and Ionic Conductivity
,”
Solid State Ionics
0167-2738,
52
, pp.
23
32
.
4.
Yamamoto
,
O.
,
Arati
,
Y.
,
Takeda
,
Y.
,
Imanishi
,
N.
,
Mizutani
,
Y.
,
Kawai
,
M.
, and
Nakamura
,
Y.
, 1995, “
Electrical Conductivity of Stabilized Zirconia With Ytterbia and Scandia
,”
Solid State Ionics
0167-2738,
79
, pp.
137
142
.
5.
Minh
,
N. Q.
, 1993, “
A Study of Screen Printed YSZ Layers for Solid Oxide Fuel Cells
,”
J. Am. Ceram. Soc.
0002-7820,
76
, pp.
563
588
.
6.
Mogensen
,
M.
, and
Skaarup
,
S.
, 1996, “
Kinetic and Geometric Aspects of Solid Oxide Fuel Cell Electrodes
,”
Solid State Ionics
0167-2738,
86–88
, pp.
1151
1160
.
7.
Fukui
,
T.
,
Murata
,
K.
,
Ohara
,
S.
,
Abe
,
H.
,
Naito
,
M.
, and
Nogi
,
K.
, 2004, “
Morphology Control of Ni-YSZ Cermet Anode for Lower Temperature Operation of SOFCs
,”
J. Power Sources
0378-7753,
125
, pp.
17
21
.
8.
Kim
,
W. -H.
,
Song
,
H. -S.
,
Moon
,
J.
, and
Lee
,
H. -W.
, 2006, “
Intermediate Temperature Solid Oxide Fuel Cell Using (La,Sr)(Co,Fe)O3-Based Cathodes
,”
Solid State Ionics
0167-2738,
177
, pp.
3211
3216
.
9.
Kim
,
S. D.
,
Moon
,
H.
,
Hyun
,
S. H.
,
Moon
,
J.
,
Kim
,
J.
, and
Lee
,
H. W.
, 2006, “
Nano-Composite Materials for High-Performance and Durability of Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
163
, pp.
392
397
.
10.
Yoon
,
D.
,
Lee
,
J. -J.
,
Park
,
H. -G.
, and
Hyun
,
S. -H.
, 2010, “
NiO/YSZ-YSZ Nanocomposite Functional Layer for High Performance Solid Oxide Fuel Cell Anodes
,”
J. Electrochem. Soc.
0013-4651,
157
(
4
), pp.
B455
B462
.
11.
Kim
,
S. D.
,
Moon
,
H.
,
Hyun
,
S. H.
,
Moon
,
J.
,
Kim
,
J.
, and
Lee
,
H. W.
, 2006, “
Performance and Durability of Ni-Coated YSZ Anodes for Intermediate Temperature Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
177
, pp.
931
938
.
12.
Wang
,
Z. R.
,
Qian
,
J. Q.
,
Wang
,
S. R.
,
Cao
,
J. D.
, and
Wen
,
T. L.
, 2008, “
Improvement of Anode-Supported Solid Oxide Fuel Cells
,”
Solid State Ionics
0167-2738,
179
, pp.
1593
1596
.
13.
Zhang
,
X.
,
Robertson
,
M.
,
Decès-Petit
,
C.
,
Xide
,
Y.
,
Hui
,
R.
,
Qu
,
W.
,
Kesler
,
O.
,
Maric
,
R.
, and
Ghosh
,
D.
, 2008, “
Solid Oxide Fuel Cells With Bi-Layered Electrolyte Structure
,”
J. Power Sources
0378-7753,
175
, pp.
800
805
.
14.
Fergus
,
J. W.
, 2006, “
Electrolytes for Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
162
, pp.
30
40
.
15.
Kharton
,
V. V.
,
Marques
,
F. M. B.
, and
Atkinson
,
A.
, 2004, “
Transport Properties of Solid Oxide Electrolyte Ceramics: A Brief Review
,”
Solid State Ionics
0167-2738,
174
, pp.
135
149
.
You do not currently have access to this content.