This paper investigates how a constant magnetic field between the anode catalyst and the electrode surface affects the performance of an enzymatic biofuel cell. Molecular dynamics techniques were employed to observe the nanoscale proton transport phenomenon. The simulation model comprised a Au electrode, pyrroloquinoline quinine, flavin adenine dinucleotide, and glucose macromolecules with hydronium ions in aqueous solution. A constant magnetic field was applied parallel to the anode electrode surface in the simulation process. It is found that the magnetic field is able to enhance the hydronium mobility in the solution and the rate of the biochemical reaction increased. Simulation results show that the hydronium diffusivity increases from 3.80×109m2/s to a maximum 19.91×109m2/s at a glucose concentration of 27 mM and from 13.02×109m2/s to a maximum 36.44×109m2/s at a glucose concentration of 82 mM.

1.
Mano
,
N.
,
Mao
,
F.
, and
Heller
,
A.
, 2003, “
Characteristics of a Miniature Compartment-Less Glucose-O2 Biofuel Cell and Its Operation in a Living Plant
,”
J. Am. Chem. Soc.
0002-7863,
125
(
21
), pp.
6588
6894
.
2.
Davis
,
J. B.
, and
Yarbrough
,
H. F.
, Jr.
, 1962, “
Preliminary Experiments on a Microbial Fuel Cell
,”
Science
0036-8075,
137
, pp.
615
616
.
3.
Willner
,
I.
,
Shabtai
,
V. H.
, and
Blonder
,
R.
, 1996, “
Electrical Wiring of Glucose Oxidase by Reconstitution of FAD-Modified Monolayers Assembled Onto Au-Electrodes
,”
J. Am. Chem. Soc.
,
118
, pp.
10321
10322
. 0002-7863
4.
Katz
,
E.
,
Willner
,
I.
, and
Kotlyar
,
A. B.
, 1999, “
Non-Compartmentalized Glucose∣O2 Biofuel Cell by Bioengineered Electrode Surfaces
,”
J. Electroanal. Chem.
0022-0728,
479
, pp.
64
68
.
5.
Soukharev
,
V.
,
Mano
,
N.
, and
Heller
,
A.
, 2004, “
A Four Electron O2-Electroreduction Biocatalyst Superior to Platinum and a Biofuel Cell Operating at 0.88 V
,”
J. Am. Chem. Soc.
0002-7863,
126
, pp.
8368
8369
.
6.
Collman
,
J. P.
,
Fu
,
L.
,
Herrmann
,
P. C.
, and
Zhang
,
X.
, 1997, “
A Functional Model Related to Cytochrome c Oxidase and Its Electrocatalytic Four-Electron Reduction of O2
,”
Science
,
275
, pp.
949
951
. 0036-8075
7.
Tsujimura
,
S.
,
Tatsumi
,
H.
,
Ogawa
,
J.
,
Shizimu
,
S.
,
Kano
,
K.
, and
Ikeda
,
T.
, 2001, “
Bioelectrocatalytic Reduction of Dioxygen to Water at Neutral pH Using Bilirubin Oxidase as an Enzyme and 2,2′-Azinobis (3-Ethylbenzothiazolin-6-Sulfonate) as an Electron Transfer Mediator
,”
J. Electroanal. Chem.
0022-0728,
496
, pp.
69
75
.
8.
Lioubashevski
,
O.
,
Katz
,
E.
, and
Willner
,
I.
, 2004, “
Magnetic Field Effects on Electrochemical Processes: A Theoretical Hydrodynamic Model
,”
J. Phys. Chem.
,
108
, pp.
5778
5784
. 0022-3654
9.
Katz
,
E.
,
Lioubashevski
,
O.
, and
Willner
,
I.
, 2005, “
Magnetic Field Effects on Bioelectrocatalytic Reactions of Surface-Confined Enzyme System: Enhanced Performance of Biofuel Cells
,”
J. Am. Chem. Soc.
,
127
, pp.
3979
3988
. 0002-7863
10.
Hypercube
, 2002, HYPERCHEM Reference Manual.
11.
Smith
,
W.
,
Leslie
,
M.
, and
Forester
,
T. R.
, 2003, The DLPOLY_2 User Manual, CCLRC, Daresbury Laboratory.
12.
Vielstich
,
W.
,
Lamm
,
A.
, and
Gasteiger
,
H.
, 2003,
Handbook of Fuel Cells: Fundamentals, Technology and Application
,
Wiley
,
Europe
, Chap. 21.
13.
Burykin
,
A.
, and
Warshel
,
A.
, 2003, “
What Really Prevents Proton Transport Through Aquaporin? Charge Self-Energy Versus Proton Wire Proposals
,”
Biophys. J.
0006-3495,
85
, pp.
3696
3706
.
14.
Ennari
,
J.
,
Elomaa
,
M.
, and
Sundholm
,
F.
, 1999, “
Modelling a Polyelectrolyte System in Water to Estimate the Ion-Conductivity
,”
Polymer
0032-3861,
40
, pp.
5035
5041
.
You do not currently have access to this content.