In the present study, the results of the numerical implementation of a mathematical model of a planar anode-supported SOFC are reported. In particular, model results are validated and discussed when the fuel is a mixture of hydrogen and carbon monoxide, focusing on the importance of simulating direct oxidation of carbon monoxide. The mathematical model is solved in a 3D environment and the key issue is the validation comparing with experimental data, which is made in different operating conditions to establish the reliability of the presented model. The results show the importance of simulating direct oxidation of carbon monoxide and its effect on the fuel cell performance.

1.
Bove
,
R.
, and
Ubertini
,
S.
, 2006, “
Modeling Solid Oxide Fuel Cell Operation: Approaches, Techniques and Results
,”
J. Power Sources
0378-7753,
159
, pp.
543
559
.
2.
Bove
,
R.
, and
Ubertini
,
S.
, eds., 2008,
Modeling Solid Oxide Fuel Cells: Methods, Procedures and Techniques
,
Springer
,
New York
.
3.
Yakabe
,
H.
,
Ogiwara
,
T.
,
Hishinuma
,
M.
, and
Yasuda
,
I.
, 2001, “
3-D Model Calculation for Planar SOFC
,”
J. Power Sources
0378-7753,
102
(
1–2
), pp.
144
154
.
4.
Haberman
,
B. A.
, and
Young
,
J. B.
, 2004, “
Three-Dimensional Simulation of Chemically Reacting Gas Flows in the Porous Support Structure of an Integrated-Planar Solid Oxide Fuel Cell
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3617
3629
.
5.
Campanari
,
S.
, and
Iora
,
P.
, 2004, “
Comparison of Finite Volume SOFC Models for the Simulation of a Planar Cell Geometry
,”
Fuel Cells
1615-6846,
5
(
1
), pp.
34
51
.
6.
Khaleel
,
M. M. A.
,
Lin
,
Z.
,
Singh
,
P.
,
Surdoval
,
W.
, and
Collin
,
D.
, 2004, “
A Finite Element Analysis Modeling Tool for Solid Oxide Fuel Cell Development: Coupled Electrochemistry, Thermal and Flow Analysis in MARC
,”
J. Power Sources
0378-7753,
130
, pp.
136
148
.
7.
Petruzzi
,
L.
,
Cocchi
,
S.
, and
Fineschi
,
F.
, 2003, “
A Global Thermo-Electrochemical Model for SOFC Systems Design and Engineering
,”
J. Power Sources
0378-7753,
118
, pp.
96
107
.
8.
Achenbach
,
E.
, 1994, “
Three-Dimesional and Time Dependent Simulation of a Planar Solide Oxide Fuel Cell Stack
,”
J. Power Sources
0378-7753,
49
, pp.
333
348
.
9.
Zhu
,
H.
, and
Kee
,
R. J.
, 2003, “
A General Mathematical Model for Analyzing the Performance of Fuel-Cell Membrane-Electrode Assemblies
,”
J. Power Sources
0378-7753,
117
, pp.
61
74
.
10.
Andreassi
,
L.
,
Bove
,
R.
,
Lunghi
,
P.
,
Rubeo
,
G.
, and
Ubertini
,
S.
, 2008, “
Experimental and Numerical Analysis of a Radial Flow Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
32
(
12
), pp.
4559
4771
. 0360-3199
11.
H.C. Starck product information, downloadable at http://www.17 hcstarck.comhttp://www.17 hcstarck.com.
12.
Desideri
,
U.
,
Lunghi
,
P.
, and
Ubertini
,
S.
, 2001, “
Design, Construction, Start-Up and First Experimental Trials of a Test Rig for Single Fuel Cells
,”
Proceedings of ASME Advanced Energy System Division
, IMECE 2001/AEE-23650, pp.
409
416
.
13.
Daun
,
K. J.
,
Beale
,
S. B.
,
Liu
,
F.
, and
Smallwood
,
G. J.
, 2006, “
Radiation Heat Transfer in Planar SOFC Electrolytes
,”
J. Power Sources
,
157
, pp.
302
310
. 0378-7753
14.
Suwanwarangkula
,
R.
,
Croiset
,
E.
,
Fowlera
,
M. W.
,
Douglasa
,
P. L.
,
Entchevb
,
E.
, and
Douglas
,
M. A.
, 2003, “
Performance Comparison of Fick’s, Dusty-Gas and Stefan–Maxwell Models to Predict the Concentration Overpotential of a SOFC Anode
,”
J. Power Sources
0378-7753,
122
, pp.
9
18
.
15.
Lehnert
,
W.
,
Meusinger
,
J.
, and
Thom
,
F.
, 2000, “
Modeling of Gas Transport Phenomena in SOFC Anodes
,”
J. Power Sources
0378-7753,
87
, pp.
57
63
.
16.
Mills
,
A. F.
, 1994,
Basic Heat and Mass Transfer
(
Irwin Heat Transfer Series
),
Irwin Professional Publishing
.
17.
Twigg
,
M. V.
, 1996,
Catalyst Handbook
,
Manson
,
London
.
18.
Costamagna
,
P.
, and
Honegger
,
K.
, 1998, “
Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization
,”
J. Electrochem. Soc.
0013-4651,
145
, pp.
3995
4006
.
19.
Yamamura
,
T.
,
Tagawa
,
H.
,
Saito
,
T.
,
Mizusaki
,
J.
,
Kamitani
,
K.
,
Hirano
,
K.
,
Ehara
,
S.
,
Tageki
,
T.
,
Hishinuma
,
V.
,
Sasaki
,
H.
,
Sogi
,
T.
,
Nakamura
,
Y.
, and
Hashimoto
,
K.
, 1995, “
Solid Oxide Fuel Cell IV
,”
M.
Dokiya
,
O.
Yamamoto
,
H.
Tagawa
, and
S. C.
Singhal
, eds., PV 95-1,
The Electrochemical Society Proceedings Series
,
Pennington, NJ
, p.
741
.
20.
Loselevich
,
A. S.
, and
Kornyshev
,
A. A.
, 2001, “
Phenomenological Theory of Solid Oxide Fuel Cell Anode
,”
Fuel Cells
1615-6846,
1
, p.
40
.
21.
Setoguchi
,
T.
,
Okamoto
,
K.
,
Eguchi
,
K.
, and
Arai
,
H.
, 1992, “
Effects of Anode Material and Fuel on Anodic Reaction of Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
139
(
10
), pp.
2875
2880
.
22.
Jiang
,
Y.
, and
Virkar
,
A. V.
, 2003, “
Fuel Composition and Diluent Effect on Gas Transport and Performance of Anode Supported SOFCs
,”
J. Electrochem. Soc.
0013-4651,
150
, pp.
942
951
.
23.
Matsuzaki
,
Y.
, and
Yasuda
,
I.
, 2000, “
Electrochemical Oxidation of H2 and CO in a H2–H2O–CO–CO2 System at the Interface of a Ni-YSZ Cermet Electrode and YSZ Electrolyte
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
1630
1635
.
24.
Lunghi
,
P.
, and
Ubertini
,
S.
, 2004, “
First Steps Towards Fuel Cells Testing Harmonisation: Procedures and Parameters for Single Cell Performance Evaluation
,”
Fuel Cells
,
3
(
4
), pp.
208
219
. 1615-6846
You do not currently have access to this content.