This paper presents the work on the development of a self-breathing mini fuel cell stack. The diameter of the five-cell stack is same as that of a D-size battery, but the length is half of it. The maximum power could reach 1.02W when operating at 2.4V. The stabilized operating temperature was 305K at 3V after 1h of operation. The cylindrical structure design makes the cathode more accessible to the ambient air and easier for the heat to be dissipated away. To assemble the fuel cell, only a single bolt was mounted through the centerline of the fuel cell, which reduced the overall weight of the stack. A mathematical 3D model based on the finite element method was developed for the cylindrical structure. The validation of the model was carried out by comparing the measured bulk performance with the predicted performance of the mini fuel cell. The current distribution was calculated and the improved design was suggested.

1.
Nguyen
,
N. T.
, and
Chan
,
S. H.
, 2006, “
Micromachined Polymer Electrolyte Membrane and Direct Methanol Fuel Cells—A Review
,”
J. Micromech. Microeng.
0960-1317,
16
(
4
), pp.
R1
R2
.
2.
Ziegler
,
C.
,
Schmitz
,
A.
,
Tranitz
,
M.
,
Fontes
,
E.
, and
Schumacher
,
J. O.
, 2004, “
Modeling Planar and Self-Breathing Fuel Cells for Use in Electronic Devices
,”
J. Electrochem. Soc.
0013-4651,
151
, pp.
A2028
A2041
.
3.
Hottinen
,
T.
,
Mikkola
,
M.
, and
Lund
,
P.
, 2004, “
Evaluation of Planar Free-Breathing Polymer Electrolyte Membrane Fuel Cell Design
,”
J. Power Sources
0378-7753,
129
, pp.
68
72
.
4.
Hottinen
,
T.
,
Himanen
,
O.
, and
Lund
,
P.
, 2004, “
Effect of Cathode Structure on Planar Free-Breathing PEMFC
,”
J. Power Sources
0378-7753,
138
, pp.
205
210
.
5.
Mennola
,
T.
,
Noponen
,
M.
,
Kallio
,
T.
,
Mikkola
,
M.
, and
Hottinen
,
T.
, 2004, “
Water Balance in a Free-Breathing Polymer Electrolyte Membrane Fuel Cell
,”
J. Appl. Electrochem.
0021-891X,
34
,
31
36
.
6.
Chen
,
C. Y.
, and
Yang
,
P.
, 2003, “
Performance of an Air-Breathing Direct Methanol Fuel Cell
,”
J. Power Sources
0378-7753,
123
, pp.
37
42
.
7.
Liu
,
J.
,
Sun
,
G.
,
Zhao
,
F.
,
Wang
,
G.
,
Zhao
,
G.
,
Chen
,
L.
,
Yi
,
B.
, and
Xin
,
Q.
, 2004, “
Study of Sintered Stainless Steel Fiber Felt as Gas Diffusion Backing in Air-Breathing DMFC
,”
J. Power Sources
0378-7753,
133
, pp.
175
180
.
8.
Ying
,
W.
,
Sohn
,
Y. J.
,
Lee
,
W. Y.
,
Ke
,
J.
, and
Kim
,
C. S.
, 2005, “
Three-Dimensional Modeling and Experimental Investigation for an Air-Breathing Polymer Electrolyte Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
145
, pp.
563
571
.
9.
Ying
,
W.
,
Yang
,
T. H.
,
Lee
,
W. Y.
,
Ke
,
J.
, and
Kim
,
C. S.
, 2005, “
Three-Dimensional Analysis for Effect of Channel Configuration on the Performance of a Small Air-Breathing Proton Exchange Membrane Fuel Cell
,”
J. Power Sources
0378-7753,
145
, pp.
572
581
.
10.
Chan
,
S. H.
,
Xia
,
Z. T.
, and
Wei
,
Z. D.
, 2006, “
Matching of Critical Parameters in a Small Non-Pressurized Non-Humidified PEMFC Stack
,”
J. Power Sources
0378-7753,
158
, pp.
385
391
.
11.
Chan
,
S. H.
,
Goh
,
S. K.
, and
Jiang
,
S. P.
, 2003, “
A Mathematical Model of Polymer Electrolyte Fuel Cell With Anode CO Kinetics
,”
Electrochim. Acta
0013-4686,
48
(
13
), pp.
1905
1919
.
12.
Izenson
,
M. G.
, and
Hill
,
R. W.
, 2003, “
Water and Thermal Balance in PEM Fuel Cells
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X, pp.
477
486
.
13.
Xue
,
X.
, and
Tang
,
J.
, 2005, “
PEM Fuel Cell Dynamic Model With Phase Change Effect
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
2
(
4
), pp.
274
283
.
14.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
, 2000, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
(
12
), pp.
4485
4493
.
15.
Wang
,
C. Y.
,
Gu
,
W. B.
, and
Liaw
,
B. Y.
, 1998, “
Micro-Macroscopic Coupled Modeling of Batteries and Fuel Cells—I. Model Development
,”
J. Electrochem. Soc.
0013-4651,
145
(
10
), pp.
3407
3417
.
16.
Jiang
,
S. P.
,
Li
,
L.
,
Liu
,
Z. C.
,
Pan
,
M.
, and
Tang
,
H. L.
, 2005, “
Self-Assembly of PDDA-Pt Nanoparticle/Nafion Membranes for Direct Methanol Fuel Cells
,”
Electrochem. Solid-State Lett.
1099-0062,
8
(
11
), pp.
A574
A576
.
17.
Jiang
,
S. P.
,
Liu
,
Z. C.
, and
Tian
,
Z. Q.
, 2006, “
Layer-by-Layer Self-Assembly of Composite Polyelectrolyte-Nafion Membranes for Direct Methanol Fuel Cells
,”
Adv. Mater. (Weinheim, Ger.)
0935-9648,
18
(
8
), pp.
1068
1072
.
18.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
, 1991, “
Mathematical Model of a Gas Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
0001-1541,
37
, pp.
1151
1163
.
19.
Thampan
,
T.
,
Malhotra
,
S.
,
Tang
,
H.
, and
Dattaa
,
R.
, 2000, “
Modeling of Conductive Transport in Proton-Exchange Membranes for Fuel Cells
,”
J. Electrochem. Soc.
0013-4651,
147
, pp.
3242
3250
.
20.
Amphlett
,
J. C.
,
Baumert
,
R. M.
,
Mann
,
R. F.
,
Peppley
,
B. A.
, and
Roberge
,
P. R.
, 1995, “
Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
0013-4651,
142
, pp.
1
8
.
21.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
, 2002,
Transport Phenomena
, 2nd ed.,
Wiley
,
New York
.
You do not currently have access to this content.