Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The intelligent design of advanced anode materials plays a pivotal role in energy storage for lithium-ion (LIBs) and sodium-ion batteries (SIBs), offering the potential for broadening their practical applications through the development of flexible electrodes. In this study, nickel hydroxide nanoflowers grown on Ni foam (Ni(OH)2 NFs/NF) were synthesized by hydrothermal method. Subsequently, nickel hydroxide nanoflowers–polyaniline (Ni(OH)2 NFs/PANI) were synthesized by electrodeposition method. Ni(OH)2 NFs/NF and Ni(OH)2 NFs/PANI can be straightforwardly utilized as pliable electrodes. For the first discharge capacity, Ni(OH)2 NFs/PANI electrode delivers a higher capacity (1608.1 mAh g−1) than Ni(OH)2 NFs/NF (1464.1 mAh g−1) for LIBs. For the first discharge capacity, Ni(OH)2 NFs/PANI electrode delivers a superior capacity (473.4 mAh g−1) than Ni(OH)2 NFs/NF (406.6 mAh g−1) for SIBs. Ni(OH)2 NFs/PANI electrode demonstrated enhanced rate performance and cycling stability than the Ni(OH)2 NFs/NF electrode.

References

1.
Wang
,
J.
,
Zhu
,
G.
,
Liu
,
X.
,
Wang
,
G.
,
Wang
,
H.
, and
Bai
,
J.
,
2019
, “
In Situ Synthesis of Tin Dioxide Submicrorods Anchored on Nickel Foam as an Additive-Free Anode for High Performance Sodium-Ion Batteries
,”
J. Colloid Interface Sci.
,
533
(
1
), pp.
733
741
.
2.
Nitta
,
N.
,
Wu
,
F.
,
Lee
,
J. T.
, and
Yushin
,
G.
,
2015
, “
Li-Ion Battery Materials: Present and Future
,”
Mater. Today
,
18
(
5
), pp.
252
264
.
3.
Hong
,
J. H.
,
Park
,
G. D.
,
Yang
,
S. H.
,
Choi
,
J. H.
, and
Kang
,
Y. C.
,
2020
, “
Efficient Strategy for Hollow Carbon Nanospheres Embedded With Nickel Hydroxide Nanocrystals and Their Excellent Lithium-Ion Storage Performances
,”
Scr. Mater.
,
188
(
1
), pp.
112
117
.
4.
Deng
,
J.
,
Bae
,
C.
,
Marcicki
,
J.
,
Masias
,
A.
, and
Miller
,
T.
,
2018
, “
Safety Modelling and Testing of Lithium-Ion Batteries in Electrified Vehicles
,”
Nat. Energy
,
3
(
4
), pp.
261
266
.
5.
Hao
,
Q.
,
Wang
,
J.
, and
Xu
,
C.
,
2014
, “
Facile Preparation of Mn3O4 Octahedra and Their Long-Term Cycle Life as an Anode Material for Li-Ion Batteries
,”
J. Mater. Chem. A
,
2
(
1
), pp.
87
93
.
6.
Li
,
M.
,
Liu
,
Y.
,
Qin
,
B.
,
Lu
,
C.
,
Butt
,
H. A.
,
Zheng
,
T.
, and
Zhang
,
D.
,
2021
, “
Polyaniline-Coated Nanoporous Antimony With Improved Performance for Sodium-Ion Battery Anodes
,”
J. Alloys Compd.
,
861
(
1
), p.
158647
.
7.
Song
,
J.
,
Xiao
,
B.
,
Lin
,
Y.
,
Xu
,
K.
, and
Li
,
X.
,
2018
, “
Interphases in Sodium-Ion Batteries
,”
Adv. Energy Mater.
,
8
(
17
), p.
1703082
.
8.
Shi
,
H.
,
Shi
,
C.
,
Jia
,
Z.
,
Zhang
,
L.
,
Wang
,
H.
, and
Chen
,
J.
,
2022
, “
Titanium Dioxide-Based Anode Materials for Lithium-Ion Batteries: Structure and Synthesis
,”
RSC Adv.
,
12
(
52
), pp.
33641
33652
.
9.
Guan
,
R.
,
Dong
,
G.
,
Li
,
Z.
, and
Yang
,
S.
,
2022
, “
MOFs-Derived Co3O4/MWCNTs Composite as High-Performance Anode Materials for Li-Ion Batteries
,”
Mater. Lett.
,
307
(
1
), p.
130999
.
10.
Wang
,
M.
,
Chen
,
T.
,
Liao
,
T.
,
Zhang
,
X.
,
Zhu
,
B.
,
Tang
,
H.
, and
Dai
,
C.
,
2021
, “
Tin Dioxide-Based Nanomaterials as Anodes for Lithium-Ion Batteries
,”
RSC Adv.
,
11
(
2
), pp.
1200
1221
.
11.
Zhao
,
J.
,
Zhang
,
Y.
,
Wang
,
Y.
,
Li
,
H.
, and
Peng
,
Y.
,
2018
, “
The Application of Nanostructured Transition Metal Sulfides as Anodes for Lithium Ion Batteries
,”
J. Energy Chem.
,
27
(
6
), pp.
1536
1554
.
12.
Yuan
,
Q.
,
Zhang
,
J.
,
Li
,
B.
,
Wu
,
Y.
,
Wu
,
Z.
,
Dou
,
Y.
,
Yin
,
Q.
, and
Han
,
J.
,
2023
, “
An MgAl Layered Double Hydroxide as a New Transition Metal-Free Anode for Lithium-Ion Batteries
,”
Chem. Commun.
,
59
(
93
), pp.
13903
13906
.
13.
Yao
,
Y.
,
Han
,
Y.
,
Kang
,
H.
, and
Lv
,
C.
,
2019
, “
Hydrothermal Synthesis of a Lamellar Zinc Dimolybdate Hydroxide With Application as the Anode for Lithium-Ion Batteries
,”
Instrum. Sci. Technol.
,
47
(
6
), pp.
627
639
.
14.
Deng
,
X.
,
Chen
,
Z.
, and
Cao
,
Y.
,
2018
, “
Transition Metal Oxides Based on Conversion Reaction for Sodium-Ion Battery Anodes
,”
Mater. Today Chem.
,
9
(
1
), pp.
114
132
.
15.
Liu
,
Y.
,
Yang
,
C.
,
Zhang
,
Q.
, and
Liu
,
M.
,
2019
, “
Recent Progress in the Design of Metal Sulfides as Anode Materials for Sodium Ion Batteries
,”
Energy Storage Mater.
,
22
(
1
), pp.
66
95
.
16.
Patil
,
M.
,
Jang
,
H.
,
Han
,
S.-H.
,
Gattu
,
K. P.
,
Tonpe
,
D. A.
,
Kutwade
,
V. V.
, and
Sharma
,
R.
,
2023
, “
Electrochemical Performance of Low-Cost PANI-Anchored CuS Electrode for Lithium-Ion Batteries
,”
Appl. Phys. A
,
129
(
2
), p.
142
.
17.
Qi
,
M.
,
Xie
,
D.
,
Zhong
,
Y.
,
Chen
,
M.
, and
Xia
,
X.
,
2017
, “
Smart Construction of Polyaniline Shell on Cobalt Oxides as Integrated Core-Shell Arrays for Enhanced Lithium Ion Batteries
,”
Electrochim. Acta
,
247
(
1
), pp.
701
707
.
18.
Zuo
,
Y.
,
Kang
,
X.
,
Du
,
B.
, and
Zuo
,
Z.
,
2023
, “
Fabrication and Characterization of Conductive Polyaniline-Decorated Na3V2(PO4)3 Cathode for Na-Ion Batteries
,”
Solid State Ionics
,
400
(
1
), p.
116338
.
19.
Zhu
,
X.
,
Zhong
,
Y.
,
Zhai
,
H.
,
Yan
,
Z.
, and
Li
,
D.
,
2014
, “
Nanoflake Nickel Hydroxide and Reduced Graphene Oxide Composite as Anode Materials for High Capacity Lithium Ion Batteries
,”
Electrochim. Acta
,
132
(
1
), pp.
364
369
.
20.
Li
,
C.
,
Xue
,
Z.
,
Qin
,
J.
,
Sawangphruk
,
M.
,
Yu
,
P.
,
Zhang
,
X.
, and
Liu
,
R.
,
2020
, “
Synthesis of Nickel Hydroxide/Delaminated-Ti3C2 MXene Nanosheets as Promising Anode Material for High Performance Lithium Ion Battery
,”
J. Alloys Compd.
,
842
, p.
155812
.
21.
Du
,
Y.
,
Ma
,
H.
,
Guo
,
M.
,
Gao
,
T.
, and
Li
,
H.
,
2018
, “
Random Oriented Hexagonal Nickel Hydroxide Nanoplates Grown on Graphene as Binder Free Anode for Lithium Ion Battery With High Capacity
,”
Chem. Phys. Lett.
,
699
(
1
), pp.
167
170
.
22.
Wang
,
H.
,
Shao
,
B.
,
Chi
,
Y.
,
Lv
,
S.
,
Wang
,
C.
,
Li
,
B.
,
Li
,
H.
,
Li
,
Y.
, and
Yang
,
X.
,
2022
, “
Engineering of Ni(OH)2 Modified Two-Dimensional ZnIn2S4 Heterostructure for Boosting Hydrogen Evolution Under Visible Light Illumination
,”
Nanomaterials
,
12
(
6
), p.
946
.
23.
Qi
,
M.
,
Zhong
,
Y.
,
Chen
,
M.
,
Dai
,
Y.
, and
Xia
,
X.
,
2018
, “
Hollow Nickel Microtube /Carbon Nanospheres Core–Shell Arrays as Electrode Material for Rechargeable Li-Ion Batteries
,”
J. Alloys Compd.
,
750
(
1
), pp.
715
720
.
24.
Gao
,
M.
,
Sheng
,
W.
,
Zhuang
,
Z.
,
Fang
,
Q.
,
Gu
,
S.
,
Jiang
,
J.
, and
Yan
,
Y.
,
2014
, “
Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst
,”
J. Am. Chem. Soc.
,
136
(
19
), pp.
7077
7084
.
25.
Zou
,
C.
,
Li
,
Z.
,
Wang
,
C.
,
Hong
,
J.
,
Chen
,
J.
, and
Zhong
,
S.
,
2022
, “
Facile Electrodeposition Route for the Fabrication of Ni/Ni(OH)2 Nanocomposite Films With Different Supporting Electrolytes and Their Electrochemical Properties
,”
Chem. Phys. Lett.
,
793
(
1
), p.
139471
.
26.
Rehan
,
H.
,
2003
, “
A New Polymer/Polymer Rechargeable Battery: Polyaniline/LiClO4 (MeCN)/Poly-1-Naphthol
,”
J. Power Sources
,
113
(
1
), pp.
57
61
.
27.
Luo
,
K.
,
Li
,
Y.
,
Yao
,
J.
,
Huang
,
B.
,
Zhu
,
Q.
, and
Yang
,
J.
,
2023
, “
Boosting the Lithium Storage Property of Nickel-Zinc Layered Double Hydroxides by Intercalation With Dodecyl Sulfate Anions
,”
Appl. Surf. Sci.
,
620
(
60
), p.
156850
.
28.
Shi
,
J.
,
Du
,
N.
,
Zheng
,
W.
,
Li
,
X.
,
Dai
,
Y.
, and
He
,
G.
,
2017
, “
Ultrathin Ni-Co Double Hydroxide Nanosheets With Conformal Graphene Coating for Highly Active Oxygen Evolution Reaction and Lithium Ion Battery Anode Materials
,”
Chem. Eng. J.
,
327
(
1
), pp.
9
17
.
29.
Li
,
X.
,
Fortunato
,
M.
,
Cardinale
,
A. M.
,
Sarapulova
,
A.
,
Njel
,
C.
, and
Dsoke
,
S.
,
2021
, “
Electrochemical Study on Nickel Aluminum Layered Double Hydroxides as High-Performance Electrode Material for Lithium-Ion Batteries Based on Sodium Alginate Binder
,”
J. Solid State Electrochem.
,
26
(
1
), pp.
49
61
.
30.
Zhai
,
Z.
,
Liu
,
Q.
,
Zhu
,
Y.
,
Cao
,
J.
, and
Shi
,
S.
,
2019
, “
Synthesis of Ni(OH)2/Graphene Composite With Enhanced Electrochemical Property by Stirring Solvothermal Method
,”
J. Alloys Compd.
,
775
(
1
), pp.
1316
1323
.
31.
Li
,
X.
,
Sun
,
X.
,
Hu
,
X.
,
Fan
,
F.
,
Cai
,
S.
,
Zheng
,
C.
, and
Stucky
,
G. D.
,
2020
, “
Review on Comprehending and Enhancing the Initial Coulombic Efficiency of Anode Materials in Lithium-Ion/Sodium-Ion Batteries
,”
Nano Energy
,
77
(
1
), p.
105143
.
32.
Dai
,
J.
,
Yang
,
C.
,
Xu
,
Y.
,
Wang
,
X.
,
Yang
,
S.
,
Li
,
D.
,
Luo
,
L.
, et al
,
2023
, “
MoS2@Polyaniline for Aqueous Ammonium-Ion Supercapacitors
,”
Adv. Mater.
,
35
(
39
), p.
2303732
.
33.
Zhang
,
Y.
,
Lim
,
Y. V.
,
Huang
,
S.
,
Pam
,
M. E.
,
Wang
,
Y.
,
Ang
,
L. K.
,
Shi
,
Y.
, and
Yang
,
H. Y.
,
2018
, “
Tailoring NiO Nanostructured Arrays by Sulfate Anions for Sodium-Ion Batteries
,”
Small
,
14
(
28
), p.
1800898
.
34.
Li
,
Y.
,
Huang
,
R.
,
Pan
,
G.
,
Yao
,
J.
, and
Zou
,
Z.
,
2019
, “
High-Tap-Density Fe-Doped Nickel Hydroxide With Enhanced Lithium Storage Performance
,”
ACS Omega
,
4
(
4
), pp.
7759
7765
.
35.
Karaman
,
B.
,
Mohamad
,
N.
,
Avci
,
B.
, and
Ürgen
,
M.
,
2020
, “
Contribution of Polyaniline Coating to the Stability and Performance of Nickel Hydroxide Based Electroactive Materials
,”
Int. J. Energy Res.
,
44
(
14
), pp.
11691
11701
.
36.
Bai
,
Z.
,
Ju
,
Z.
,
Guo
,
C.
,
Qian
,
Y.
,
Tang
,
B.
, and
Xiong
,
S.
,
2014
, “
Direct Large-Scale Synthesis of 3D Hierarchical Mesoporous NiO Microspheres as High-Performance Anode Materials for Lithium Ion Batteries
,”
Nanoscale
,
6
(
6
), pp.
3268
3273
.
You do not currently have access to this content.