Abstract

Non-aqueous lithium-oxygen batteries (NALOBs) are a brand-new variety of recyclable batteries. Its theoretical energy density is very high, and it has enormous potential for use in a variety of industries. However, its cycle performance and discharge capacity still fall short of the scope of its application. Its low performance is mostly a result of the oxygen (O2) transport issues brought on by the cathode microstructure and insoluble discharge products. In response to the challenge of diffusing O2 to the cathode separator side, this work presents a new air cathode structure with microchannels. Experimental testing reveals that electrodes with microchannel structures can enhance specific capacity by around 16.9%, showing the feasibility of this method in enhancing electrode discharge. The material diffusion and discharge processes are simulated using the mesoscale multiphysical field coupling mathematical model using the lattice Boltzmann method after geometric reconstruction of the cathode. According to the study's findings, the construction of microchannels reduces the cathode's diffusion resistance while increasing its O2 concentration during the discharge process. In addition, the study also discusses the influence of the radius, morphology, number, and distribution of microchannels in the electrode on the O2 transport performance in different regions of the electrode.

References

1.
Ma
,
Z.
,
Yuan
,
X.
,
Li
,
L.
,
Ma
,
Z. F.
,
Wilkinson
,
D. P.
,
Zhang
,
L.
, and
Zhang
,
J.
,
2015
, “
A Review of Cathode Materials and Structures for Rechargeable Lithium-Air Batteries
,”
Energy Environ. Sci.
,
8
(
8
), pp.
2144
2198
.
2.
Tan
,
P.
,
Chen
,
B.
,
Xu
,
H.
,
Zhang
,
H.
,
Cai
,
W.
,
Ni
,
M.
,
Liu
,
M.
, and
Shao
,
Z.
,
2017
, “
Flexible Zn- and Li-Air Batteries: Recent Advances, Challenges, and Future Perspectives
,”
Energy Environ. Sci.
,
10
(
10
), pp.
2056
2080
.
3.
Gallant
,
B. M.
,
Kwabi
,
D. G.
,
Mitchell
,
R. R.
,
Zhou
,
J.
,
Thompson
,
C. V.
, and
Shao-Horn
,
Y.
,
2013
, “
Influence of Li2O2 Morphology on Oxygen Reduction and Evolution Kinetics in Li-O2 Batteries
,”
Energy Environ. Sci.
,
6
(
8
), pp.
2518
2528
.
4.
Patel
,
M.
,
Mishra
,
K.
,
Banerjee
,
R.
,
Chaudhari
,
J.
,
Kanchan
,
D. K.
, and
Kumar
,
D.
,
2023
, “
Fundamentals, Recent Developments and Prospects of Lithium and Non-Lithium Electrochemical Rechargeable Battery Systems
,”
J. Energy Chem.
,
81
, pp.
221
259
.
5.
Lu
,
Y. C.
,
Gallant
,
B. M.
,
Kwabi
,
D. G.
,
Harding
,
J. R.
,
Mitchell
,
R. R.
,
Whittingham
,
M. S.
, and
Shao-Horn
,
Y.
,
2013
, “
Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance
,”
Energy Environ. Sci.
,
6
(
3
), pp.
750
768
.
6.
Yuan
,
T.
,
Zhang
,
W.
,
Li
,
W. T.
,
Song
,
C.
,
He
,
Y. S.
,
Razal
,
J. M.
,
Ma
,
Z. F.
, and
Chen
,
J.
,
2015
, “
N-Doped Pierced Graphene Microparticles as a Highly Active Electrocatalyst for Li-Air Batteries
,”
2D Mater.
,
2
(
2
), pp.
2053
1583
.
7.
Zhang
,
W.
,
Shen
,
Y.
,
Sun
,
D.
,
Huang
,
Z.
, and
Huang
,
Y.
,
2017
, “
Objectively Evaluating the Cathode Performance of Lithium-Oxygen Batteries
,”
Adv. Energy Mater.
,
7
(
24
), p.
1602938
.
8.
Lu
,
Y. C.
,
Kwabi
,
D. G.
,
Yao
,
K. P. C.
,
Harding
,
J. R.
,
Zhou
,
J.
,
Zuin
,
L.
, and
Shao-Horn
,
Y.
,
2011
, “
The Discharge Rate Capability of Rechargeable Li-O2 Batteries
,”
Energy Environ. Sci.
,
4
(
8
), pp.
2999
3007
.
9.
Bae
,
Y.
,
Ko
,
D.-H.
,
Lee
,
S.
,
Lim
,
H.-D.
,
Kim
,
Y.-J.
,
Shim
,
H.-S.
,
Park
,
H.
, et al
,
2018
, “
Enhanced Stability of Coated Carbon Electrode for Li-O2 Batteries and Its Limitations
,”
Adv. Energy Mater.
,
8
(
16
), p.
1702661
.
10.
Wang
,
L.
,
Pan
,
J.
,
Zhang
,
Y.
,
Cheng
,
X.
,
Liu
,
L.
, and
Peng
,
H.
,
2017
, “
A Li-Air Battery With Ultralong Cycle Life in Ambient Air
,”
Adv. Mater.
,
30
(
3
), p.
1704378
.
11.
Gallant
,
B. M.
,
Mitchell
,
R. R.
,
Kwabi
,
D. G.
,
Zhou
,
J.
,
Zuin
,
L.
,
Thompson
,
C. V.
, and
Shao-Horn
,
Y.
,
2012
, “
Chemical and Morphological Changes of Li-O2 Battery Electrodes Upon Cycling
,”
J. Phys. Chem. C
,
116
(
39
), pp.
20800
20805
.
12.
Lu
,
J.
,
Lau
,
K. C.
,
Sun
,
Y. K.
,
Curtiss
,
L. A.
, and
Amine
,
K.
,
2015
, “
Review—Understanding and Mitigating Some of the Key Factors That Limit Non-Aqueous Lithium-Air Battery Performance
,”
J. Electrochem. Soc.
,
162
(
14
), pp.
A2439
A2446
.
13.
Samira
,
S.
,
Deshpande
,
S.
,
Roberts
,
C. A.
,
Nacy
,
A. M.
,
Kubal
,
J.
,
Matesić
,
K.
,
Oesterling
,
O.
,
Greeley
,
J.
, and
Nikolla
,
E.
,
2019
, “
Nonprecious Metal Catalysts for Tuning Discharge Product Distribution at Solid-Solid Interfaces of Aprotic Li-O2 Batteries
,”
Chem. Mater.
,
31
(
18
), pp.
7300
7310
.
14.
Liang
,
Z.
,
Zou
,
Q.
,
Wang
,
Y.
, and
Lu
,
Y. C.
,
2017
, “
Recent Progress in Applying In Situ/Operando Characterization Techniques to Probe the Solid/Liquid/Gas Interfaces of Li-O2 Batteries
,”
Small Methods
,
1
(
7
), p.
1700150
.
15.
Pan
,
W.
,
Yang
,
X.
,
Bao
,
J.
, and
Wang
,
M.
,
2017
, “
Optimizing Discharge Capacity of Li-O2 Batteries by Design of Air-Electrode Porous Structure: Multifidelity Modeling and Optimization
,”
J. Electrochem. Soc.
,
164
(
11
), pp.
E3499
E3511
.
16.
Ji
,
L.
, and
Gu
,
Z.
,
2022
, “
Application of Nonlinear Triangular Fuzzy Fault Tree Algorithm in Predicting Lithium Battery Air Transport Accidents
,”
J. Electron. Res. Appl.
,
6
(
5
), pp.
19
26
.
17.
Batcho
,
T. P.
,
Leverick
,
G.
,
Shao-Horn
,
Y.
, and
Thompson
,
C. V.
,
2019
, “
Modeling the Effect of Lithium Superoxide Solvation and Surface Reduction Kinetics on Discharge Capacity in Lithium-Oxygen Batteries
,”
J. Phys. Chem. C
,
123
(
23
), pp.
14272
14282
.
18.
Hou
,
J.
,
Yang
,
M.
,
Ellis
,
M. W.
,
Moore
,
R. B.
, and
Yi
,
B.
,
2012
, “
Lithium Oxides Precipitation in Nonaqueous Li-Air Batteries
,”
Phys. Chem. Chem. Phys.
,
14
(
39
), pp.
13487
13501
.
19.
Ezeigwe
,
E. R.
,
Dong
,
L.
,
Manjunatha
,
R.
,
Zuo
,
Y.
,
Deng
,
S- Q.
,
Tan
,
M.
,
Yan
,
W.
,
Zhang
,
J.
, and
Wilkinson
,
D. P.
,
2022
, “
A Review of Lithium-O2/CO2 and Lithium-CO2 Batteries: Advanced Electrodes/Materials/Electrolytes and Functional Mechanisms
,”
Nano Energy
,
95
, p.
106964
.
20.
Gao
,
J.
,
Cai
,
X.
,
Wang
,
J.
,
Hou
,
M.
,
Lai
,
L.
, and
Zhang
,
L.
,
2018
, “
Recent Progress in Hierarchically Structured O2-Cathodes for Li-O2 Batteries
,”
Chem. Eng. J.
,
352
, pp.
972
995
.
21.
Li
,
R.
,
Hu
,
A.
,
Zhao
,
C.
,
Zhou
,
B.
,
He
,
M.
,
Fan
,
Y.
,
Chen
,
J.
,
Yan
,
Z.
,
Pan
,
Y.
, and
Long
,
J.
,
2023
, “
Tailoring Mixed Geometrical Configurations in Amorphous Catalysts to Activate Oxygen Electrode Reactions of Lithium-Oxygen Batteries
,”
Chem. Eng. J.
,
452
, p.
139162
.
22.
Kubannek
,
F.
,
Turek
,
T.
, and
Krewer
,
U.
,
2019
, “
Modeling Oxygen Gas Diffusion Electrodes for Various Technical Applications
,”
Chem. Ing. Tech.
,
91
(
6
), pp.
720
733
.
23.
Xue
,
K. H.
,
McTurk
,
E.
,
Johnson
,
L.
,
Bruce
,
P. G.
, and
Franco
,
A. A.
,
2015
, “
A Comprehensive Model for Non-Aqueous Lithium Air Batteries Involving Different Reaction Mechanisms
,”
J. Electrochem. Soc.
,
162
(
4
), pp.
A614
A621
.
24.
Ren
,
Y. X.
,
Zhao
,
T. S.
,
Tan
,
P.
,
Wei
,
Z. H.
, and
Zhou
,
X. L.
,
2017
, “
Modeling of an Aprotic Li-O2 Battery Incorporating Multiple-Step Reactions
,”
Appl. Energy
,
187
, pp.
706
716
.
25.
Grübl
,
D.
,
Bergner
,
B.
,
Schröder
,
D.
,
Janek
,
J.
, and
Bessler
,
W. G.
,
2016
, “
Multistep Reaction Mechanisms in Nonaqueous Lithium-Oxygen Batteries With Redox Mediator: A Model-Based Study
,”
J. Phys. Chem. C
,
120
(
43
), pp.
24623
24636
.
26.
Zhang
,
Z.
,
Xiao
,
X.
,
Yu
,
W.
,
Zhao
,
Z.
, and
Tan
,
P.
,
2022
, “
Modeling of a Non-Aqueous Li-O2 Battery Incorporating Synergistic Reaction Mechanisms, Microstructure, and Species Transport in the Porous Electrode
,”
Electrochim. Acta
,
421
, p.
140510
.
27.
Sergeev
,
A. V.
,
Chertovich
,
A. V.
,
Itkis
,
D. M.
,
Goodilin
,
E. A.
, and
Khokhlov
,
A. R.
,
2015
, “
Effects of Cathode and Electrolyte Properties on Lithium-Air Battery Performance: Computational Study
,”
J. Power Sources
,
279
, pp.
707
712
.
28.
Wang
,
F.
,
Li
,
X.
,
Tan
,
J.
,
Hao
,
X.
, and
Xiong
,
B.
,
2022
, “
Pore-Scale Prediction of the Oxygen Effective Diffusivity in Porous Battery Electrodes Using the Random Walk Theory
,”
Int. J. Heat Mass Transfer
,
183
, p.
122085
.
29.
Blanquer
,
G.
,
Yin
,
Y.
,
Quiroga
,
M. A.
, and
Franco
,
A. A.
,
2015
, “
Modeling Investigation of the Local Electrochemistry in Lithium-O2 Batteries: A Kinetic Monte Carlo Approach
,”
J. Electrochem. Soc.
,
163
(
3
), pp.
A329
A337
.
30.
Ryan
,
E. M.
,
Ferris
,
K.
,
Tartakovsky
,
A.
, and
Khaleel
,
M.
,
2012
, “
Computational Modeling of Transport Limitations in Li-Air Batteries
,”
ECS Meet. Abstr.
,
MA2012-01
(
6
), pp.
155
155
.
31.
Shodiev
,
A.
,
Primo
,
E.
,
Arcelus
,
O.
,
Chouchane
,
M.
,
Osenberg
,
M.
,
Hilger
,
A.
,
Manke
,
I.
,
Li
,
J.
, and
Franco
,
A. A.
,
2021
, “
Insight on Electrolyte Infiltration of Lithium ion Battery Electrodes by Means of a New Three-Dimensional-Resolved Lattice Boltzmann Model
,”
Energy Storage Mater.
,
38
, pp.
80
92
.
32.
Jithin
,
M.
,
Das
,
M. K.
, and
De
,
A.
,
2016
, “
Lattice Boltzmann Simulation of Lithium Peroxide Formation in Lithium-Oxygen Battery
,”
J. Electrochem. Energy Convers. Storage
,
13
(
3
), p.
031003
.
33.
Gao
,
Y.
,
Zhou
,
W.
,
Wen
,
Z.
,
Dou
,
R.
, and
Liu
,
X.
,
2023
, “
Meso-Scale Simulation of Li-O2 Battery Discharge Process by an Improved Lattice Boltzmann Method
,”
Electrochim. Acta
,
442
, p.
141880
.
34.
Xu
,
S.
,
Liao
,
P.
,
Yang
,
D.
,
Li
,
Z.
,
Li
,
B.
,
Ming
,
P.
, and
Zhou
,
X.
,
2023
, “
Liquid Water Transport in Gas Flow Channels of PEMFCs: A Review on Numerical Simulations and Visualization Experiments
,”
Int. J. Hydrogen Energy
,
48
(
27
), pp.
10118
10143
.
35.
Ju
,
H.
,
2008
, “
Analyzing the Effects of Immobile Liquid Saturation and Spatial Wettability Variation on Liquid Water Transport in Diffusion Media of Polymer Electrolyte Fuel Cells (PEFCs)
,”
J. Power Sources
,
185
(
1
), pp.
55
62
.
36.
Kang
,
K.
,
Oh
,
K.
,
Park
,
S.
,
Jo
,
A.
, and
Ju
,
H.
,
2012
, “
Effect of Spatial Variation of Gas Diffusion Layer Wetting Characteristics on Through-Plane Water Distribution in a Polymer Electrolyte Fuel Cell
,”
J. Power Sources
,
212
, pp.
93
99
.
37.
Lim
,
I. S.
,
Lee
,
Y. I.
,
Kang
,
B.
,
Park
,
J. Y.
, and
Kim
,
M. S.
,
2022
, “
Electrochemical Performance and Water Management Investigation of Polymer Electrolyte Membrane Fuel Cell (PEMFC) Using Gas Diffusion Layer With Polytetrafluoroethylene (PTFE) Content Gradients in Through-Plane Direction
,”
Electrochim. Acta
,
421
, p.
140509
.
38.
Bevers
,
D.
,
Rogers
,
R.
, and
von Bradke
,
M.
,
1996
, “
Examination of the Influence of PTFE Coating on the Properties of Carbon Paper in Polymer Electrolyte Fuel Cells
,”
J. Power Sources
,
63
(
2
), pp.
193
201
.
39.
Ito
,
H.
,
Abe
,
K.
,
Ishida
,
M.
,
Nakano
,
A.
,
Maeda
,
T.
,
Munakata
,
T.
,
Nakajima
,
H.
, and
Kitahara
,
T.
,
2014
, “
Effect of Through-Plane Distribution of Polytetrafluoroethylene in Carbon Paper on in-Plane Gas Permeability
,”
J. Power Sources
,
248
, pp.
822
830
.
40.
Choi
,
J.
, and
Son
,
G.
,
2008
, “
Numerical Study of Droplet Motion in a Microchannel With Different Contact Angles
,”
J. Mech. Sci. Technol.
,
22
(
12
), pp.
2590
2599
.
41.
Zhu
,
X.
,
Liao
,
Q.
,
Sui
,
P. C.
, and
Djilali
,
N.
,
2010
, “
Numerical Investigation of Water Droplet Dynamics in a Low-Temperature Fuel Cell Microchannel: Effect of Channel Geometry
,”
J. Power Sources
,
195
(
3
), pp.
801
812
.
42.
Mohammadian
,
S. K.
, and
Zhang
,
Y.
,
2018
, “
Improving Wettability and Preventing Li-Ion Batteries From Thermal Runaway Using Microchannels
,”
Int. J. Heat Mass Transfer
,
118
, pp.
911
918
.
43.
Gaya
,
C.
,
Yin
,
Y.
,
Torayev
,
A.
,
Mammeri
,
Y.
, and
Franco
,
A. A.
,
2018
, “
Investigation of Bi-Porous Electrodes for Lithium Oxygen Batteries
,”
Electrochim. Acta
,
279
, pp.
118
127
.
44.
Xue
,
K. H.
,
Nguyen
,
T. K.
, and
Franco
,
A. A.
,
2014
, “
Impact of the Cathode Microstructure on the Discharge Performance of Lithium Air Batteries: A Multiscale Model
,”
J. Electrochem. Soc.
,
161
(
8
), pp.
E3028
E3035
.
45.
Sahapatsombut
,
U.
,
Cheng
,
H.
, and
Scott
,
K.
,
2013
, “
Modelling of Electrolyte Degradation and Cycling Behaviour in a Lithium-Air Battery
,”
J. Power Sources
,
243
, pp.
409
418
.
46.
Read
,
J.
,
Mutolo
,
K.
,
Ervin
,
M.
,
Behl
,
W.
,
Wolfenstine
,
J.
,
Driedger
,
A.
, and
Foster
,
D.
,
2003
, “
Oxygen Transport Properties of Organic Electrolytes and Performance of Lithium/Oxygen Battery
,”
J. Electrochem. Soc.
,
150
(
10
), pp.
A1351
A1356
.
47.
Li
,
X.
,
Huang
,
J.
, and
Faghri
,
A.
,
2015
, “
Modeling Study of a Li-O2 Battery With an Active Cathode
,”
Energy
,
81
, pp.
489
500
.
48.
Fang
,
W.Z.
,
Qiao
,
R.
,
Kang
,
Q.
, and
Tao
,
W.Q.
,
2021
, “
Pore-Scale Simulation of Reactive Transport Processes in Lithium-Oxygen Batteries
,”
Int. Commun. Heat Mass Transfer
,
129
, p.
105740
.
49.
Wang
,
F.
, and
Li
,
X.
,
2018
, “
Pore-Scale Simulations of Porous Electrodes of Li-O2 Batteries at Different Saturation Levels
,”
ACS Appl. Mater. Interfaces
,
10
(
31
), pp.
26222
26232
.
You do not currently have access to this content.