Abstract

Energy storage is a common challenge for spacecraft and vehicles, whose operating range and operational availability are limited to a considerable extent by the storage capacity; mass and volume are the main issues. Composite structural batteries (CSBs) are emerging as a new solution to reduce the size of electric systems that can bear loads and store energy. Carbon-fiber-reinforced polymers (CFRP) offer significant advantages over metallic structures. This paper reviews the recent design of multifunctional composites by combining batteries with CFRP to obtain structural lightweight and excellent mechanical properties. The assembly methods for different CSBs based on the type of electrolyte used are discussed. A comparative analysis is performed on the energy density, rate performance, cycle performance, and mechanical performance with a particular focus on the multifunctional efficiency of various CSBs. Furthermore, the opportunities and challenges in CSBs are discussed, and research ideas are proposed for this emerging field.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Duffner
,
F.
,
Kronemeyer
,
N.
,
Tübke
,
J.
,
Leker
,
J.
,
Winter
,
M.
, and
Schmuch
,
R.
,
2021
, “
Post-Lithium-Ion Battery Cell Production and Its Compatibility With Lithium-Ion Cell Production Infrastructure
,”
Nat. Energy
,
6
(
2
), pp.
123
134
.
2.
Li
,
M.
,
Lu
,
J.
,
Chen
,
Z.
, and
Amine
,
K.
,
2018
, “
30 Years of Lithium-Ion Batteries
,”
Adv. Mater.
,
30
(
33
), p.
1800561
.
3.
Tomaszewska
,
A.
,
Chu
,
Z. Y.
,
Feng
,
X. N.
,
O'Kane
,
S.
,
Liu
,
X. H.
,
Chen
,
J. Y.
, et al
,
2019
, “
Lithium-Ion Battery Fast Charging: A Review
,”
Etransportation
,
1
, p.
100011
.
4.
Harper
,
G.
,
Sommerville
,
R.
,
Kendrick
,
E.
,
Driscoll
,
L.
,
Slater
,
P.
,
Stolkin
,
R.
, et al
,
2019
, “
Recycling Lithium-Ion Batteries From Electric Vehicles
,”
Nature
,
575
(
7781
), pp.
75
86
.
5.
Gonzalez
,
C.
,
Vilatela
,
J. J.
,
Molina-Aldareguia
,
J. M.
,
Lopes
,
C. S.
, and
Llorca
,
J.
,
2017
, “
Structural Composites for Multifunctional Applications: Current Challenges and Future Trends
,”
Prog. Mater. Sci.
,
89
, pp.
194
251
.
6.
Ferreira
,
A.
,
Nóvoa
,
P. R. O.
, and
Marques
,
A. T.
,
2016
, “
Multifunctional Material Systems: A State-of-the-Art Review
,”
Compos. Struct.
,
15
, pp.
13
35
.
7.
Wang
,
G.
,
Babaahmadi
,
V.
,
He
,
N.
,
Liu
,
Y.
,
Pan
,
Q.
,
Montazer
,
M.
, et al
,
2017
, “
Wearable Supercapacitors on Polyethylene Terephthalate Fabrics With Good Wash Fastness and High Flexibility
,”
J. Power Sources
,
367
, pp.
34
41
.
8.
Mikolajczak
,
C.
,
Kahn
,
M.
,
White
,
K.
, and
Long
,
R. T.
,
2012
,
Lithium-Ion Batteries Hazard and Use Assessment
,
Springer Science & Business Media
,
New York
.
9.
Wagner
,
F. T.
,
Lakshmanan
,
B.
, and
Mathias
,
M. F.
,
2010
, “
Electrochemistry and the Future of the Automobile
,”
J. Phys. Chem. Lett.
,
1
(
14
), pp.
2204
2219
.
10.
Neubauer
,
J.
,
Pesaran
,
A.
,
Bae
,
C.
,
Elder
,
R.
, and
Cunningham
,
B.
,
2014
, “
Updating United States Advanced Battery Consortium and Department of Energy Battery Technology Targets for Battery Electric Vehicles
,”
J. Power Sources
,
271
, pp.
614
621
.
11.
Xia
,
Y.
,
Wierzbicki
,
T.
,
Sahraei
,
E.
, and
Zhang
,
X.
,
2014
, “
Damage of Cells and Battery Packs Due to Ground Impact
,”
J. Power Sources
,
267
, pp.
78
97
.
12.
Andrea
,
D.
,
2010
,
Battery Management Systems for Large Lithium-Ion Battery Packs
,
Artech House
,
US
.
13.
Ladpli
,
P.
,
Nardari
,
R.
,
Kopsaftopoulos
,
F.
, and
Chang
,
F.
,
2019
, “
Multifunctional Energy Storage Composite Structures With Embedded Lithium-Ion Batteries
,”
J. Power Sources
,
414
, pp.
517
529
.
14.
Galos
,
J.
,
Best
,
A.
, and
Mouritz
,
A.
,
2020
, “
Multifunctional Sandwich Composites Containing Embedded Lithium-Ion Polymer Batteries Under Bending Loads
,”
Mater. Des.
,
185
, p.
108228
.
15.
Thomas
,
J.
,
Qidwai
,
M. A.
,
Matic
,
P.
,
Everett
,
R.
,
Gozdz
,
A. S.
,
Keennon
,
M.
, et al.
,
2002
, “
Structure-Power Multifunctional Materials for UAV's
,”
Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies
,
San Diego, CA
,
Mar. 17–21
, Vol. 4698, pp.
160
170
.
16.
Adam
,
T. J.
,
Liao
,
G.
,
Petersen
,
J.
,
Geier
,
S.
,
Finke
,
B.
,
Wierach
,
P.
, et al
,
2018
, “
Multifunctional Composites for Future Energy Storage in Aerospace Structures
,”
Energies
,
11
(
2
), p.
335
.
17.
Wang
,
M.
,
Vecchio
,
D.
,
Wang
,
C.
,
Emre
,
A.
,
Xiao
,
X.
,
Jiang
,
Z.
, et al
,
2020
, “
Biomorphic Structural Batteries for Robotics
,”
Sci. Robot.
,
5
(
45
), p.
1912
.
18.
Hopkins
,
B. J.
,
Long
,
J. W.
,
Rolison
,
D. R.
, and
Parker
,
J. F.
,
2020
, “
High-Performance Structural Batteries
,”
Joule
,
4
(
11
), pp.
2240
2243
.
19.
Pereira
,
T.
,
Guo
,
Z.
,
Nieh
,
S.
,
Arias
,
J.
, and
Hahn
,
H. T.
,
2008
, “
Embedding Thin-Film Lithium Energy Cells in Structural Composites
,”
Compos. Sci. Technol.
,
68
(
7–8
), pp.
1935
1941
.
20.
Pereira
,
T.
,
Guo
,
Z.
,
Nieh
,
S.
,
Arias
,
J.
, and
Hahn
,
H. T.
,
2009
, “
Energy Storage Structural Composites: A Review
,”
J. Compos. Mater.
,
43
(
5
), pp.
549
560
.
21.
Snyder
,
J. F.
,
Wong
,
E. L.
, and
Hubbard
,
C. W.
,
2009
, “
Evaluation of Commercially Available Carbon Fibers, Fabrics, and Papers for Potential Use in Multifunctional Energy Storage Applications
,”
J. Electrochem. Soc.
,
156
(
3
), p.
A215
.
22.
Galos
,
J.
,
Khatibi
,
A. A.
, and
Mouritz
,
A. P.
,
2019
, “
Vibration and Acoustic Properties of Composites With Embedded Lithium-Ion Polymer Batteries
,”
Compos. Struct.
,
220
, pp.
677
686
.
23.
Thomas
,
J.
,
Qidwai
,
S.
,
Pogue
,
W.
, III
, and
Pham
,
G.
,
2013
, “
Multifunctional Structure-Battery Composites for Marine Systems
,”
J. Compos. Mater.
,
47
(
1
), pp.
5
26
.
24.
Thomas
,
J. P.
,
Pogue
,
W. R.
,
Pham
,
G. T.
, and
Qidwai
,
S. M.
,
2019
, “
Flexure and Pressure-Loading Effects on the Performance of Structure–Battery Composite Beams
,”
J. Compos. Mater.
,
53
(
20
), pp.
2863
2874
.
25.
Rohatgi
,
A.
,
Thomas
,
J. P.
,
Qidwai
,
M. A. S.
, and
Pogue
,
W. R.
, III
,
2008
, “
Performance Characterization of Multifunctional Structure-Battery Composites for Marine Applications
,”
ASME International Mechanical Engineering Congress and Exposition
,
Boston, MA
,
Oct. 31–Nov. 6
, Vol. 48739, pp.
375
383
.
26.
Lim
,
W.
, and
Jung
,
S.
,
2019
, “
Design and Optimization of Fixture Structure With Stiffeners for Large-Scale Battery Stacks
,”
J. Mech. Sci. Technol.
,
33
(
5
), pp.
2281
2288
.
27.
Kim
,
H. S.
,
Kang
,
J. S.
,
Park
,
J. S.
,
Hahn
,
H. T.
,
Jung
,
H. C.
, and
Joung
,
J. W.
,
2009
, “
Inkjet Printed Electronics for Multifunctional Composite Structure
,”
Compos. Sci. Technol.
,
69
(
7–8
), pp.
1256
1264
.
28.
Martha
,
S. K.
,
Kiggans
,
J. O.
,
Nanda
,
J.
, and
Dudney
,
N. J.
,
2011
, “
Advanced Lithium Battery Cathodes Using Dispersed Carbon Fibers as the Current Collector
,”
J. Electrochem. Soc.
,
158
(
9
), p.
A1060
.
29.
Lu
,
H.
,
Hagberg
,
J.
,
Lindbergh
,
G.
, and
Cornell
,
A.
,
2017
, “
Li4Ti5O12 Flexible, Lightweight Electrodes Based on Cellulose Nanofibrils as Binder and Carbon Fibers as Current Collectors for Li-Ion Batteries
,”
Nano Energy
,
39
, pp.
140
150
.
30.
Park
,
H.-W.
,
Jang
,
M.-S.
,
Choi
,
J.-S.
,
Pyo
,
J.
, and
Kim
,
C.-G.
,
2021
, “
Characteristics of Woven Carbon Fabric Current Collector Electrodes for Structural Battery
,”
Compos. Struct.
,
256
, p.
112999
.
31.
Kalnaus
,
S.
,
Asp
,
L. E.
,
Li
,
J.
,
Veith
,
G. M.
,
Nanda
,
J.
,
Daniel
,
C.
, et al
,
2021
, “
Multifunctional Approaches for Safe Structural Batteries
,”
J. Energy Storge
,
40
, p.
102747
.
32.
Navarro-Suárez
,
A. M.
, and
Shaffer
,
M. S.
,
2021
, “
Designing Structural Electrochemical Energy Storage Systems: A Perspective on the Role of Device Chemistry
,”
Front. Chem.
,
9
, p.
810781
.
33.
Danzi
,
F.
,
Salgado
,
R. M.
,
Oliveira
,
J. E.
,
Arteiro
,
A.
,
Camanho
,
P. P.
, and
Braga
,
M. H.
,
2021
, “
Structural Batteries: A Review
,”
Molecules
,
26
(
8
), p.
2203
.
34.
Asp
,
L. E.
, and
Greenhalgh
,
E. S.
,
2014
, “
Structural Power Composites
,”
Compos. Sci. Technol.
,
101
, pp.
41
61
.
35.
Zhou
,
H.
,
Li
,
H.
,
Li
,
L.
,
Liu
,
T.
,
Chen
,
G.
,
Zhu
,
Y.
, et al
,
2022
, “
Structural Composite Energy Storage Devices—A Review
,”
Mater. Today Energy
,
24
, p.
100924
.
36.
Jin
,
T.
,
Singer
,
G.
,
Liang
,
K.
, and
Yang
,
Y.
,
2023
, “
Structural Batteries: Advances, Challenges and Perspectives
,”
Mater. Today
,
62
, pp.
151
167
.
37.
Choi
,
J.-S.
,
Park
,
H.-W.
,
Noh
,
J.-E.
,
Cha
,
J.
,
Jang
,
W.-H.
, and
Kim
,
C.-G.
,
2023
, “
Composite-Fabric-Based Structure-Integrated Energy Storage System
,”
Compos. Struct.
,
310
, p.
116757
.
38.
Moyer
,
K.
,
Boucherbil
,
N. A.
,
Zohair
,
M.
,
Eaves-Rathert
,
J.
, and
Pint
,
C. L.
,
2020
, “
Polymer Reinforced Carbon Fiber Interfaces for High Energy Density Structural Lithium-Ion Batteries
,”
Sustainable Energy Fuels
,
4
(
6
), pp.
2661
2668
.
39.
Javaid
,
A.
, and
Ali
,
M. Z.
,
2018
, “
Multifunctional Structural Lithium Ion Batteries for Electrical Energy Storage Applications
,”
Mater. Res. Express
,
5
(
5
), p.
055701
.
40.
Asp
,
L. E.
,
Bouton
,
K.
,
Carlstedt
,
D.
,
Duan
,
S.
,
Harnden
,
R.
,
Johannisson
,
W.
, et al
,
2021
, “
A Structural Battery and Its Multifunctional Performance
,”
Adv. Eng. Sustainability Res.
,
2
(
3
), p.
2000093
.
41.
Thakur
,
A.
, and
Dong
,
X.
,
2020
, “
Printing With 3D Continuous Carbon Fiber Multifunctional Composites via UV-Assisted Coextrusion Deposition
,”
Manuf. Lett.
,
24
, pp.
1
5
.
42.
Qian
,
J.
,
Chen
,
Q.
,
Hong
,
M.
,
Xie
,
W.
,
Jing
,
S.
,
Bao
,
Y.
, et al
,
2022
, “
Toward Stretchable Batteries: 3D-Printed Deformable Electrodes and Separator Enabled by Nanocellulose
,”
Mater. Today
,
54
, pp.
18
26
.
43.
Chen
,
J.
,
Zhou
,
Y.
,
Islam
,
M. S.
,
Cheng
,
X.
,
Brown
,
S. A.
,
Han
,
Z.
, et al
,
2021
, “
Carbon Fiber Reinforced Zn–MnO2 Structural Composite Batteries
,”
Compos. Sci. Technol.
,
209
, p.
108787
.
44.
Moyer
,
K.
,
Meng
,
C.
,
Marshall
,
B.
,
Assal
,
O.
,
Eaves
,
J.
,
Perez
,
D.
, et al
,
2020
, “
Carbon Fiber Reinforced Structural Lithium-Ion Battery Composite: Multifunctional Power Integration for CubeSats
,”
Energy Storage Mater.
,
24
, pp.
676
681
.
45.
Han
,
Z.
,
Zhu
,
J.
,
Feng
,
Y.
,
Zhang
,
W.
,
Xiong
,
Y.
, and
Zhang
,
W.
,
2024
, “
Manufacturing Carbon Fabric Composite Structural Batteries Using Spray With High-Pressure and High-Temperature and Vacuum-Bag Assisted Infusion Techniques
,”
Compos. Sci. Technol.
,
245
, p.
110321
.
46.
Meng
,
C.
,
Muralidharan
,
N.
,
Teblum
,
E.
,
Moyer
,
K. E.
,
Nessim
,
G. D.
, and
Pint
,
C. L.
,
2018
, “
Multifunctional Structural Ultrabattery Composite
,”
Nano Lett.
,
18
(
12
), pp.
7761
7768
.
47.
Snyder
,
J.
,
Carter
,
R.
,
Wong
,
E.
,
Nguyen
,
P.
,
Xu
,
K.
,
Ngo
,
E.
, et al
,
2007
, “
Multifunctional Structural Composite Batteries
,”
Chem. Mater.
,
19
(
15
), pp.
3793
3801
.
48.
South
,
J. T.
,
Carter
,
R. H.
,
Snyder
,
J. F.
,
Hilton
,
C. D.
,
O'Brien
,
D. J.
, and
Wetzel
,
E. D.
,
2004
, “
Multifunctional Power-Generating and Energy-Storing Structural Composites for US Army Applications
,”
MRS Online Proc. Libr.
,
851
, pp.
269
280
.
49.
Wong
,
E.
,
Baechle
,
D.
,
Xu
,
K.
,
Carter
,
R.
,
Snyder
,
J.
, and
Wetzel
,
E.
,
2007
, “
Design and Processing of Structural Composite Batteries
,”
Proceedings of SAMPE
,
Baltimore, MD
,
June 3–7
.
50.
Yu
,
Y.
,
Zhang
,
B.
,
Feng
,
M.
,
Qi
,
G.
,
Tian
,
F.
,
Feng
,
Q.
, et al
,
2017
, “
Multifunctional Structural Lithium Ion Batteries Based on Carbon Fiber Reinforced Plastic Composites
,”
Compos. Sci. Technol.
,
147
, pp.
62
70
.
51.
Carlstedt
,
D.
, and
Asp
,
L. E.
,
2020
, “
Performance Analysis Framework for Structural Battery Composites in Electric Vehicles
,”
Composites, Part B
,
186
, p.
107822
.
52.
Johannisson
,
W.
,
Zenkert
,
D.
, and
Lindbergh
,
G.
,
2019
, “
Model of a Structural Battery and Its Potential for System Level Mass Savings
,”
Multifunctional Mater.
,
2
(
3
), p.
035002
.
53.
Carlstedt
,
D.
,
Johannisson
,
W.
,
Zenkert
,
D.
,
Linde
,
P.
, and
Asp
,
L. E.
,
2018
, “
Conceptual Design Framework for Laminated Structural Battery Composites
,”
Proceedings of the ECCM 2018–18th European Conference on Composite Materials
,
Athens, Greece
,
June 24
, pp.
1
8
.
54.
Ihrner
,
N.
,
Johannisson
,
W.
,
Sieland
,
F.
,
Zenkert
,
D.
, and
Johansson
,
M.
,
2017
, “
Structural Lithium Ion Battery Electrolytes via Reaction Induced Phase-Separation
,”
J. Mater. Chem. A
,
5
(
48
), pp.
25652
25659
.
55.
Zhao
,
Y.
,
Zhao
,
D.
,
Zhang
,
T.
,
Li
,
H.
,
Zhang
,
B.
, and
Zhenchong
,
Z.
,
2020
, “
Preparation and Multifunctional Performance of Carbon Fiber-Reinforced Plastic Composites for Laminated Structural Batteries
,”
Polym. Compos.
,
41
(
8
), pp.
3023
3033
.
56.
Liu
,
P.
,
Sherman
,
E.
, and
Jacobsen
,
A.
,
2009
, “
Design and Fabrication of Multifunctional Structural Batteries
,”
J. Power Sources
,
189
(
1
), pp.
646
650
.
57.
Pappas
,
J. M.
,
Thakur
,
A. R.
, and
Dong
,
X.
,
2021
, “
Effects of Cathode Doping on 3D Printed Continuous Carbon Fiber Structural Battery Composites by UV-Assisted Coextrusion Deposition
,”
J. Compos. Mater.
,
55
(
26
), pp.
3893
3908
.
58.
Tian
,
Y.
,
Zeng
,
G.
,
Rutt
,
A.
,
Shi
,
T.
,
Kim
,
H.
,
Wang
,
J.
, et al
,
2020
, “
Promises and Challenges of Next-Generation ‘Beyond Li-Ion’ Batteries for Electric Vehicles and Grid Decarbonization
,”
Chem. Rev.
,
121
(
3
), pp.
1623
1669
.
59.
Scholz
,
A. E.
,
Hermanutz
,
A.
, and
Hornung
,
M.
,
2018
, “
Feasibility Analysis and Comparative Assessment of Structural Power Technology in All-Electric Composite Aircraft
,”
67. Deutscher Luft- und Raumfahrtkongress
,
Friedrichshafen, Germany
,
Sept. 4–6
.
60.
Dong
,
G. H.
,
Mao
,
Y. Q.
,
Yang
,
G. M.
,
Li
,
Y. Q.
,
Song
,
S. F.
,
Xu
,
C.-H.
, et al
,
2021
, “
High-Strength Poly (Ethylene Oxide) Composite Electrolyte Reinforced With Glass Fiber and Ceramic Electrolyte Simultaneously for Structural Energy Storage
,”
ACS Appl. Energy Mater.
,
4
(
4
), pp.
4038
4049
.
61.
Doyle
,
M.
, and
Newman
,
J.
,
1997
, “
Analysis of Capacity–Rate Data for Lithium Batteries Using Simplified Models of the Discharge Process
,”
J. Appl. Electrochem.
,
27
(
7
), pp.
846
856
.
62.
Kondo
,
H.
, and
Srinivasan
,
V.
,
2021
, “
Simulation Study of Rate Limiting Factors of Li-Ion Batteries Using Experimental Functions of Electronic and Ionic Resistances
,”
Electrochim. Acta
,
371
, p.
137834
.
63.
Tian
,
R.
,
Park
,
S.-H.
,
King
,
P. J.
,
Cunningham
,
G.
,
Coelho
,
J.
,
Nicolosi
,
V.
, et al
,
2019
, “
Quantifying the Factors Limiting Rate Performance in Battery Electrodes
,”
Nat. Commun.
,
10
(
1
), p.
1933
.
64.
Han
,
X.
,
Lu
,
L.
,
Zheng
,
Y.
,
Feng
,
X.
,
Li
,
Z.
,
Li
,
J.
, et al
,
2019
, “
A Review on the key Issues of the Lithium Ion Battery Degradation Among the Whole Life Cycle
,”
eTransportation
,
1
, p.
1100005
.
65.
Liu
,
H.
,
Cheng
,
C.
, and
Zhang
,
K.
,
2007
, “
The Effect of ZnO Coating on LiMn2O4 Cycle Life in High Temperature for Lithium Secondary Batteries
,”
Mater. Chem. Phys.
,
101
(
2
), pp.
276
279
.
66.
Wang
,
R.
,
Li
,
X.
,
Wang
,
Z.
,
Guo
,
H.
, and
Wang
,
J.
,
2015
, “
Electrochemical Analysis for Cycle Performance and Capacity Fading of Lithium Manganese Oxide Spinel Cathode at Elevated Temperature Using p-Toluenesulfonyl Isocyanate as Electrolyte Additive
,”
Electrochim. Acta
,
180
, pp.
815
823
.
67.
Oh
,
J.
,
Jin
,
D.
,
Kim
,
K.
,
Song
,
D.
,
Lee
,
Y. M.
, and
Ryou
,
M.-H.
,
2017
, “
Improving the Cycling Performance of Lithium-Ion Battery Si/Graphite Anodes Using a Soluble Polyimide Binder
,”
ACS Omega
,
2
(
11
), pp.
8438
8444
.
68.
Cheng
,
H.
,
Shapter
,
J. G.
,
Li
,
Y.
, and
Gao
,
G.
,
2021
, “
Recent Progress of Advanced Anode Materials of Lithium-Ion Batteries
,”
J. Energy Chem.
,
57
, pp.
451
468
.
69.
Azam
,
M. A.
,
Safie
,
N. E.
,
Ahmad
,
A. S.
,
Yuza
,
N. A.
, and
Zulkifli
,
N. S. A.
,
2021
, “
Recent Advances of Silicon, Carbon Composites and Tin Oxide as New Anode Materials for Lithium-Ion Battery: A Comprehensive Review
,”
J. Energy Storage
,
33
, p.
102096
.
70.
Shim
,
J.
,
Kostecki
,
R.
,
Richardson
,
T.
,
Song
,
X.
, and
Striebel
,
K. A.
,
2002
, “
Electrochemical Analysis for Cycle Performance and Capacity Fading of a Lithium-Ion Battery Cycled at Elevated Temperature
,”
J. Power Sources
,
112
(
1
), pp.
222
230
.
71.
Kraytsberg
,
A.
, and
Ein-Eli
,
Y.
,
2016
, “
Conveying Advanced Li-Ion Battery Materials Into Practice the Impact of Electrode Slurry Preparation Skills
,”
Adv. Energy Mater.
,
6
(
21
), p.
1600655
.
72.
Weydanz
,
W. J.
,
Reisenweber
,
H.
,
Gottschalk
,
A.
,
Schulz
,
M.
,
Knoche
,
T.
,
Reinhart
,
G.
, et al
,
2018
, “
Visualization of Electrolyte Filling Process and Influence of Vacuum During Filling for Hard Case Prismatic Lithium ion Cells by Neutron Imaging to Optimize the Production Process
,”
J. Power Sources
,
380
, pp.
126
134
.
73.
Shi
,
Q.
,
Liu
,
W.
,
Qu
,
Q.
,
Gao
,
T.
,
Wang
,
Y.
,
Liu
,
G.
, et al
,
2017
, “
Robust Solid/Electrolyte Interphase on Graphite Anode to Suppress Lithium Inventory Loss in Lithium-Ion Batteries
,”
Carbon
,
111
, pp.
291
298
.
74.
Sahraei
,
E.
,
Campbell
,
J.
, and
Wierzbicki
,
T.
,
2012
, “
Modeling and Short Circuit Detection of 18650 Li-Ion Cells Under Mechanical Abuse Conditions
,”
J. Power Sources
,
220
, pp.
360
372
.
75.
Sahraei
,
E.
,
Hill
,
R.
, and
Wierzbicki
,
T.
,
2012
, “
Calibration and Finite Element Simulation of Pouch Lithium-Ion Batteries for Mechanical Integrity
,”
J. Power Sources
,
201
, pp.
307
321
.
76.
ASTM
,
2015
, “
Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials ASTM D7264/D7264M-07
,”
ASTM Compass
,
14
(
3
).
77.
Ekstedt
,
S.
,
Wysocki
,
M.
, and
Asp
,
L.
,
2010
, “
Structural Batteries Made From Fibre Reinforced Composites
,”
Plast. Rubber Compos.
,
39
(
3–5
), pp.
148
150
.
78.
Landowski
,
M.
,
Strugała
,
G.
,
Budzik
,
M.
, and
Imielińska
,
K. J. C. P. B. E.
,
2017
, “
Impact Damage in SiO2 Nanoparticle Enhanced Epoxy–Carbon Fibre Composites
,”
Compos. Part B-ENG
,
113
, pp.
91
99
.
79.
Eskizeybek
,
V.
,
Avcı
,
A.
, and
Gülce
,
A.
,
2017
, “
Preparation and Mechanical Properties of Carbon Nanotube Grafted Glass Fabric/Epoxy Multi-Scale Composites
,”
Adv. Compos. Mater.
,
26
(
2
), pp.
169
180
.
80.
Shalouf
,
S. M.
,
Zhang
,
J.
, and
Wang
,
C.
,
2014
, “
“Effects of Mechanical Deformation on Electric Performance of Rechargeable Batteries Embedded in Load Carrying Composite Structures
,”
Plast. Rubber Compos.
,
43
(
3
), pp.
98
104
.
81.
O' Brien
,
D. J.
,
Baechle
,
D. M.
, and
Wetzel
,
E. D.
,
2010
, “
Performance Metrics for Structural Composite Capacitiors
,”
ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems Conference
,
Philadelphia, PA
,
Sept. 28–Oct. 1
, pp, 215–221.
82.
O'Brien
,
D. J.
,
Baechle
,
D. M.
, and
Wetzel
,
E. D.
,
2011
, “
Design and Performance of Multifunctional Structural Composite Capacitors
,”
J. Compos. Mater.
,
45
(
26
), pp.
2797
2809
.
83.
Tang
,
W.
,
Zhu
,
Y.
,
Hou
,
Y.
,
Liu
,
L.
,
Wu
,
Y.
,
Loh
,
K. P.
, et al
,
2013
, “
Aqueous Rechargeable Lithium Batteries as an Energy Storage System of Superfast Charging
,”
Energy Environ. Sci.
,
6
(
7
), pp.
2093
2104
.
84.
Xiao
,
J.
,
Mei
,
D.
,
Li
,
X.
,
Xu
,
W.
,
Wang
,
D.
,
Graff
,
G. L.
, et al
,
2011
, “
Hierarchically Porous Graphene as a Lithium–air Battery Electrode
,”
Nano Lett.
,
11
(
11
), pp.
5071
5078
.
85.
Xu
,
J.
,
Geng
,
Z.
,
Johansen
,
M.
,
Carlstedt
,
D.
,
Duan
,
S.
,
Thiringer
,
T.
, et al
,
2022
, “
A Multicell Structural Battery Composite Laminate
,”
EcoMat
,
4
(
3
), p.
e12180
.
86.
Pandey
,
D.
,
Sambath Kumar
,
K.
,
Henderson
,
L. N.
,
Suarez
,
G.
,
Vega
,
P.
,
Salvador
,
H. R.
, et al
,
2022
, “
Energized Composites for Electric Vehicles: A Dual Function Energy-Storing Supercapacitor-Based Carbon Fiber Composite for the Body Panels
,”
Small
,
18
(
9
), p.
2107053
.
87.
Huang
,
C.
,
Young
,
N. P.
,
Zhang
,
J.
,
Snaith
,
H. J.
, and
Grant
,
P. S.
,
2017
, “
A Two Layer Electrode Structure for Improved Li Ion Diffusion and Volumetric Capacity in Li Ion Batteries
,”
Nano Energy
,
31
, pp.
377
385
.
88.
Lee
,
S. H.
,
Huang
,
C.
, and
Grant
,
P. S.
,
2019
, “
Layer-by-Layer Printing of Multi-Layered Heterostructures Using Li4Ti5O12 and Si for High Power Li-Ion Storage
,”
Nano Energy
,
61
, pp.
96
103
.
89.
Wu
,
J.
,
Qin
,
X.
,
Zhang
,
H.
,
He
,
Y.-B.
,
Li
,
B.
,
Ke
,
L.
, et al
,
2015
, “
Multilayered Silicon Embedded Porous Carbon/Graphene Hybrid Film as a High Performance Anode
,”
Carbon
,
84
, pp.
434
443
.
90.
Liu
,
T.
,
Cao
,
F.
,
Ren
,
L.
,
Li
,
X.
,
Sun
,
S.
,
Sun
,
X.
, et al
,
2017
, “
A Theoretical Study of Different Carbon Coatings Effect on the Depolarization Effect and Electrochemical Performance of LiFePO4 Cathode
,”
J. Electroanal. Chem.
,
807
, pp.
52
58
.
91.
Jin
,
W.-W.
,
Li
,
H.-J.
,
Zou
,
J.-Z.
,
Zeng
,
S.-Z.
,
Li
,
Q.-D.
,
Xu
,
G.-Z.
, et al
,
2018
, “
Conducting Polymer-Coated MIL-101/S Composite With Scale-Like Shell Structure for Improving Li–S Batteries
,”
RSC Adv.
,
8
(
9
), pp.
4786
4793
.
92.
Liu
,
T.
,
Li
,
X.
,
Sun
,
S.
,
Sun
,
X.
,
Cao
,
F.
,
Ohsaka
,
T.
, et al
,
2018
, “
Analysis of the Relationship Between Vertical Imparity Distribution of Conductive Additive and Electrochemical Behaviors in Lithium ion Batteries
,”
Electrochim. Acta
,
269
, pp.
422
428
.
93.
Peabody
,
C.
, and
Arnold
,
C. B.
,
2011
, “
The Role of Mechanically Induced Separator Creep in Lithium-Ion Battery Capacity Fade
,”
J. Power Sources
,
196
(
19
), pp.
8147
8153
.
94.
Shen
,
X.
,
Zhang
,
R.
,
Shi
,
P.
,
Chen
,
X.
, and
Zhang
,
Q.
,
2021
, “
How Does External Pressure Shape Li Dendrites in Li Metal Batteries?
,”
Adv. Energy Mater.
,
11
(
10
), p.
2003416
.
95.
Wang
,
Q.
,
Ping
,
P.
,
Zhao
,
X.
,
Chu
,
G.
,
Sun
,
J.
, and
Chen
,
C.
,
2012
, “
Thermal Runaway Caused Fire and Explosion of Lithium ion Battery
,”
J. Power Sources
,
208
, pp.
210
224
.
96.
Jaguemont
,
J.
,
Boulon
,
L.
, and
Dubé
,
Y.
,
2016
, “
A Comprehensive Review of Lithium-Ion Batteries Used in Hybrid and Electric Vehicles at Cold Temperatures
,”
Appl. Energy
,
164
, pp.
99
114
.
97.
Karimi
,
G.
, and
Li
,
X.
,
2013
, “
Thermal Management of Lithium-Ion Batteries for Electric Vehicles
,”
Int. J. Energy Res.
,
37
(
1
), pp.
13
24
.
98.
Wang
,
J.
,
Lu
,
S.
,
Wang
,
Y.
,
Li
,
C.
, and
Wang
,
K.
,
2020
, “
Effect Analysis on Thermal Behavior Enhancement of Lithium-Ion Battery Pack With Different Cooling Structures
,”
J. Energy Storage
,
32
, p.
101800
.
99.
Wang
,
D.
,
Zheng
,
L.
,
Li
,
X.
,
Du
,
G.
,
Feng
,
Y.
,
Jia
,
L.
, et al
,
2020
, “
Thermal Safety of Ternary Soft Pack Power Lithium Battery
,”
Energy Storage Sci. Technol.
,
9
(
5
), p.
1517
.
100.
Obradovic
,
J.
,
Boria
,
S.
, and
Belingardi
,
G.
,
2012
, “
Lightweight Design and Crash Analysis of Composite Frontal Impact Energy Absorbing Structures
,”
Compos. Struct.
,
94
(
2
), pp.
423
430
.
101.
Pan
,
Y.
,
Xiong
,
Y.
,
Dai
,
W.
,
Diao
,
K.
,
Wu
,
L.
, and
Wang
,
J.
,
2020
, “
Crush and Crash Analysis of an Automotive Battery-Pack Enclosure for Lightweight Design
,”
Int. J. Crashworthiness
,
27
(
2
), pp.
500
509
.
102.
Zhang
,
X.
,
Sahraei
,
E.
, and
Wang
,
K.
,
2016
, “
Li-Ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts
,”
Sci. Rep.
,
6
(
1
), p.
32578
.
103.
Shirshova
,
N.
,
Bismarck
,
A.
,
Carreyette
,
S.
,
Fontana
,
Q. P.
,
Greenhalgh
,
E. S.
,
Jacobsson
,
P.
, et al
,
2013
, “
Structural Supercapacitor Electrolytes Based on Bicontinuous Ionic Liquid–Epoxy Resin Systems
,”
J. Mater. Chem. A
,
1
(
48
), pp.
15300
15309
.
104.
Shirshova
,
N.
,
Bismarck
,
A.
,
Greenhalgh
,
E. S.
,
Johansson
,
P.
,
Kalinka
,
G.
,
Marczewski
,
M. J.
, et al
,
2014
, “
Composition as a Means to Control Morphology and Properties of Epoxy Based Dual-Phase Structural Electrolytes
,”
J. Phys. Chem. C
,
118
(
49
), pp.
28377
28387
.
105.
Wang
,
Y.
,
Dang
,
D.
,
Li
,
D.
,
Hu
,
J.
, and
Cheng
,
Y.-T.
,
2019
, “
Influence of Polymeric Binders on Mechanical Properties and Microstructure Evolution of Silicon Composite Electrodes During Electrochemical Cycling
,”
J. Power Sources
,
425
, pp.
170
178
.
106.
Pattarakunnan
,
K.
,
Galos
,
J.
,
Das
,
R.
, and
Mouritz
,
A.
,
2021
, “
Impact Damage Tolerance of Energy Storage Composite Structures Containing Lithium-Ion Polymer Batteries
,”
Compos. Struct.
,
267
, p.
113845
.
107.
Zou
,
J.
,
Lei
,
Z.
,
Bai
,
R.
,
Liu
,
D.
,
Jiang
,
H.
,
Liu
,
J.
, et al
,
2021
, “
Damage and Failure Analysis of Composite Stiffened Panels Under Low-Velocity Impact and Compression After Impact
,”
Compos. Struct.
,
262
, p.
113333
.
108.
Benayad
,
A.
,
Diddens
,
D.
,
Heuer
,
A.
,
Krishnamoorthy
,
A. N.
,
Maiti
,
M.
,
Cras
,
F. L.
, et al
,
2022
, “
High-Throughput Experimentation and Computational Freeway Lanes for Accelerated Battery Electrolyte and Interface Development Research
,”
Adv. Energy Mater.
,
12
(
17
), p.
2102678
.
109.
Attia
,
P. M.
,
Grover
,
A.
,
Jin
,
N.
,
Severson
,
K. A.
,
Markov
,
T. M.
,
Liao
,
Y.-H.
, et al
,
2020
, “
Closed-Loop Optimization of Fast-Charging Protocols for Batteries With Machine Learning
,”
Nature
,
578
(
7795
), pp.
397
402
.
110.
Jiang
,
B.
,
Dai
,
H.
,
Wei
,
X.
, and
Jiang
,
Z.
,
2023
, “
Multi-Kernel Relevance Vector Machine With Parameter Optimization for Cycling Aging Prediction of Lithium-Ion Batteries
,”
IEEE J. Emerging Sel. Top. Power Electron.
,
11
(
1
), pp.
175
186
.
111.
Jiang
,
B.
,
Zhu
,
J.
,
Wang
,
X.
,
Wei
,
X.
,
Shang
,
W.
, and
Dai
,
H.
,
2022
, “
A Comparative Study of Different Features Extracted From Electrochemical Impedance Spectroscopy in State of Health Estimation for Lithium-Ion Batteries
,”
Appl. Energy
,
322
, p.
119502
.
112.
Zhenya
,
S.
,
Zhenkun
,
L.
,
Ruixiang
,
B.
,
Hao
,
J.
,
Jianchao
,
Z.
,
Yu
,
M.
, et al
,
2021
, “
Prediction of Compression Buckling Load and Buckling Mode of Hat-Stiffened Panels Using Artificial Neural Network
,”
Eng. Struct.
,
242
, p.
112275
.
113.
Sun
,
Z.
,
Lei
,
Z.
,
Zou
,
J.
,
Bai
,
R.
,
Jiang
,
H.
, and
Yan
,
C.
,
2021
, “
Prediction of Failure Behavior of Composite Hat-Stiffened Panels Under In-Plane Shear Using Artificial Neural Network
,”
Compos. Struct.
,
272
, p.
114238
.
114.
Zou
,
J.C.
,
2021
,
“Study on Damage Mechanism and Performance Prediction of Fiber Composites under Compression/ Shear After Impact
,” Ph.D. dissertation,
Dalian University of Technology
,
Dalian, China
.
You do not currently have access to this content.