Abstract

Due to the frequent occurrence of electric vehicles safety accidents caused by battery system failures, in order to ensure the normal operation of the vehicle, it is crucial to do a fault diagnosis of the electric vehicle lithium battery. This paper presents a fault diagnosis method for lithium batteries based on optimal variational modal decomposition and dimensionless feature parameters for identifying faulty batteries. The method first preprocesses the voltage signal of a lithium battery by optimal variable mode decomposition to obtain the high- and low-frequency components of the signal and reconstructs the high- and low-frequency components. Then, the dimensionless feature parameters are extracted according to the reconstructed signal, and feature reduction of the dimensionless feature parameters is carried out by a locally linear embedding algorithm. Finally, a local outlier factor algorithm is used to detect faulty batteries. After verified by the operation data before the real electric vehicle's thermal runaway failure, this method can detect the faulty battery timely and accurately.

References

1.
Calise
,
F.
,
Cappiello
,
F.
,
Dentice d’Accadia
,
M.
, and
Vicidomini
,
M.
,
2020
, “
Energy and Economic Analysis of a Small Hybrid Solar-Geothermal Trigeneration System: A Dynamic Approach
,”
Energy
,
208
(
1
), p.
118295
.
2.
Li
,
H.
,
Zhou
,
D.
,
Du
,
C.
, and
Zhang
,
C.
,
2020
, “
Parametric Study on the Safety Behavior of Mechanically Induced Short Circuit for Lithium-Ion Pouch Batteries
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
2
), p.
020904
.
3.
Wang
,
Y.
,
Zhang
,
C.
, and
Chen
,
Z.
,
2016
, “
An Adaptive Remaining Energy Prediction Approach for Lithium-Ion Batteries in Electric Vehicles
,”
J. Power Sources
,
305
(
15
), pp.
80
88
.
4.
Yin
,
H.
,
Ma
,
S.
,
Li
,
H.
,
Wen
,
G.
,
Santhanagopalan
,
S.
, and
Zhang
,
C.
,
2021
, “
Modeling Strategy for Progressive Failure Prediction in Lithium-Ion Batteries Under Mechanical Abuse
,”
eTransportation
,
7
(
2
), p.
100098
.
5.
Wu
,
C.
,
Zhu
,
C.
,
Ge
,
Y.
, and
Zhao
,
Y.
,
2015
, “
A Review on Fault Mechanism and Diagnosis Approach for Li-ion Batteries
,”
J. Nanomater.
,
8
, pp.
1
9
.
6.
Li
,
H.
,
Liu
,
B.
,
Zhou
,
D.
, and
Zhang
,
C.
,
2020
, “
Coupled Mechanical–Electrochemical–Thermal Study on the Short-Circuit Mechanism of Lithium-Ion Batteries Under Mechanical Abuse
,”
J. Electrochem. Soc.
,
167
(
12
), p.
120501
.
7.
Chen
,
X.
,
Zhang
,
X.
,
Wang
,
H.
,
Jia
,
J.
,
Xie
,
S.
,
Zhi
,
M.
,
Fu
,
J.
, and
Sun
,
Q.
,
2021
, “
Influence of Ambient Pressure and Heating Power on the Thermal Runaway Features of Lithium-Ion Battery
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
2
), p.
021401
.
8.
Chen
,
Z.
,
Xu
,
K.
,
Wei
,
J.
, and
Dong
,
G.
,
2019
, “
Voltage Fault Detection for Lithium-Ion Battery Pack Using Local Outlier Factor
,”
Measurement
,
146
, pp.
544
556
.
9.
Chen
,
Z.
,
Xiong
,
R.
,
Tian
,
J.
,
Shang
,
X.
, and
Lu
,
J.
,
2016
, “
Model-based Fault Diagnosis Approach on External Short Circuit of Lithium-ion Battery Used in Electric Vehicles
,”
Appl. Energy
,
184
, pp.
365
374
.
10.
Xia
,
C.
, and
Mi
,
C.
,
2016
, “
A Fault-Tolerant Voltage Measurement Method for Series Connected Battery Packs
,”
J. Power Sources
,
308
, pp.
83
96
.
11.
Xia
,
B.
,
Shang
,
Y.
,
Nguyen
,
T.
, and
Mi
,
C.
,
2017
, “
A Correlation-Based Fault Detection Method for Short Circuits in Battery Packs
,”
J. Power Sources
,
337
, pp.
1
10
.
12.
Lu
,
L.
,
Han
,
X.
,
Li
,
J.
,
Hua
,
J.
, and
Ouyang
,
M.
,
2013
, “
A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles
,”
J. Power Sources
,
226
, pp.
272
288
.
13.
Rezvanizaniani
,
S. M.
,
Liu
,
Z.
,
Chen
,
Y.
, and
Lee
,
J.
,
2014
, “
Review and Recent Advances in Battery Health Monitoring and Prognostics Technologies for Electric Vehicles (EV) Safety and Mobility
,”
J. Power Sources
,
256
(
9
), pp.
110
124
.
14.
Xiong
,
R.
,
Sun
,
W.
,
Yu
,
Q.
, and
Sun
,
F.
,
2020
, “
Research Progress, Challenges and Prospects of Fault Diagnosis on Battery System of Electric Vehicles
,”
Appl. Energy
,
279
(
Part B
), p.
115855
.
15.
Hui
,
W.
, and
Xudong
,
R.
,
2010
, “
Overview of Fault Diagnosis and Fault-Tolerant Control for Nonlinear Systems
,”
J. Zhejiang Wanli Univ.
,
23
(
4
), pp.
43
48
.
16.
Hu
,
X.
,
Zhang
,
K.
,
Liu
,
K.
,
Lin
,
X.
,
Dey
,
S.
, and
Onori
,
S.
,
2020
, “
Advanced Fault Diagnosis for Lithium-Ion Battery Systems: A Review of Fault Mechanisms, Fault Features, and Diagnosis Procedures
,”
IEEE Ind. Electron. Mag.IEEE Industry Applications Magazine = IEEE Ind. Appl. Mag.
,
14
(
3
), pp.
65
91
.
17.
Tomasov
,
M.
,
Kajanova
,
M.
,
Bracinik
,
P.
, and
Motyka
,
D.
,
2019
, “
Overview of Battery Models for Sustainable Power and Transport Applications
,”
Transp. Res. Procedia
,
40
, pp.
548
555
.
18.
Zhentong
,
L.
, and
Hongwen
,
H.
, “
Sensor Fault Detection and Isolation for a Lithium-Ion Battery Pack in Electric Vehicles Using Adaptive Extended Kalman Filter
,”
Appl. Energy
,
185
(
P2
), pp.
2033
2044
.
19.
Feng
,
X.
,
He
,
X.
,
Lu
,
L.
, and
Ouyang
,
M.
,
2018
, “
Analysis on the Fault Features for Internal Short Circuit Detection Using an Electrochemical
,”
J. Electrochem. Soc.
,
165
(
2
), pp.
A155
A167
.
20.
Zheng
,
C.
,
Chen
,
Z.
, and
Huang
,
D.
,
2020
, “
Fault Diagnosis of Voltage Sensor and Current Sensor for Lithium-Ion Battery Pack Using Hybrid System Modeling and Unscented Particle Filter
,”
Energy
,
191
(
C
), p.
116504
.
21.
Dey
,
S.
,
Biron
,
Z. A.
,
Tatipamula
,
S.
,
Das
,
N.
,
Mohon
,
S.
,
Ayalew
,
B.
, and
Pisu
,
P.
,
2016
, “
Model-Based Real-Time Thermal Fault Diagnosis of Lithium-Ion Batteries
,”
Control Eng. Pract.
,
56
(
3
), pp.
37
48
.
22.
Gao
,
W.
,
Zheng
,
Y.
,
Ouyang
,
M.
,
Li
,
J.
,
Lai
,
X.
, and
Hu
,
X.
,
2019
, “
Micro-Short-Circuit Diagnosis for Series-Connected Lithium-Ion Battery Packs Using Mean-Difference Model
,”
IEEE Trans. Ind. Electron.
,
66
(
3
), pp.
2132
2142
.
23.
Kong
,
X.
,
Plett
,
G. L.
,
Trimboli
,
M. S.
,
Zhang
,
Z.
,
Qiao
,
D.
,
Zhao
,
T.
, and
Zheng
,
Y.
,
2020
, “
Pseudo-two-dimensional Model and Impedance Diagnosis of Micro Internal Short Circuit in Lithium-Ion Cells
,”
J. Energy Storage
,
27
(
C
), p.
101085
.
24.
Yang
,
R.
,
Xiong
,
R.
,
He
,
H.
, and
Chen
,
Z.
,
2018
, “
A Fractional-Order Model-Based Battery External Short Circuit Fault Diagnosis Approach for All-Climate Electric Vehicles Application
,”
J. Cleaner Prod.
,
187
, pp.
950
959
.
25.
Li
,
X.
, and
Wang
,
Z.
,
2018
, “
A Novel Fault Diagnosis Method for Lithium-Ion Battery Packs of Electric Vehicles
,”
Measurement
,
116
, pp.
402
411
.
26.
Kang
,
Y.
,
Duan
,
B.
,
Zhou
,
Z.
,
Shang
,
Y.
, and
Zhang
,
C.
,
2019
, “
A Multi-fault Diagnostic Method Based on an Interleaved Voltage Measurement Topology for Series Connected Battery Packs
,”
J. Power Sources
,
417
, pp.
132
144
.
27.
Yao
,
L.
,
Wang
,
Z.
, and
Ma
,
J.
,
2015
, “
Fault Detection of the Connection of Lithium-Ion Power Batteries Based on Entropy for Electric Vehicles
,”
J. Power Sources
,
293
, pp.
548
561
.
28.
Li
,
X.
, and
Wang
,
Z.
, “
A Novel Fault Diagnosis Method for Lithium-Ion Battery Packs of Electric Vehicles
,”
Measurement
,
116
, pp.
402
411
.
29.
Li
,
S.
,
Zhou
,
Y.
,
Li
,
R.
, and
Zhao
,
X.
,
2020
, “
Online Lithium Battery Fault Diagnosis Based on Least Square Support Vector Machine Optimized by Ant Lion Algorithm
,”
Int. J. Performability Eng.
,
16
(
10
), pp.
1637
1645
.
30.
Yao
,
L.
,
Fang
,
Z.
,
Xiao
,
Y.
,
Hou
,
J.
, and
Fu
,
Z.
,
2021
, “
An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine
,”
Energy
,
214
, p.
118866
.
31.
Jiang
,
J.
,
Li
,
T.
,
Chang
,
C.
,
Yang
,
C.
, and
Liao
,
L.
,
2022
, “
Fault Diagnosis Method for Lithium-Ion Batteries in Electric Vehicles Based on Isolated Forest Algorithm
,”
J. Energy Storage
,
50
(
3
), p.
104177
.
32.
Yao
,
L.
,
Xiao
,
Y.
,
Gong
,
X.
,
Hou
,
J.
, and
Chen
,
X.
,
2020
, “
A Novel Intelligent Method for Fault Diagnosis of Electric Vehicles Battery System Based on Wavelet Neural Network
,”
J. Power Sources
,
453
, p.
227870
.
33.
Zheng
,
H.
,
Li
,
Z.
, and
Chen
,
X.
,
2020
, “
Gear Fault Diagnosis Based on Continuous Wavelet Transform
,”
Mech. Syst. Signal Process
,
16
(
2–3
), pp.
447
457
.
34.
Li
,
X.
,
Dai
,
K.
,
Wang
,
Z.
, and
Han
,
W.
,
2020
, “
Lithium-Ion Batteries Fault Diagnostic for Electric Vehicles Using Sample Entropy Analysis Method
,”
J. Energy Storage
,
27
, p.
101121
.
35.
Cong
,
X.
,
Zhang
,
C.
,
Jiang
,
J.
,
Zhang
,
W.
, and
Jiang
,
Y.
,
2020
, “
A Hybrid Method for the Prediction of the Remaining Useful Life of Lithium-Ion Batteries With Accelerated Capacity Degradation
,”
IEEE Trans. Veh. Technol.
,
69
(
11
), pp.
12775
12785
.
36.
Dragomiretskiy
,
K.
, and
Zosso
,
D.
,
2014
, “
Variational Mode Decomposition
,”
IEEE Trans. Signal Process.
,
62
(
3
), pp.
531
544
.
37.
Chen
,
C.
,
Song
,
Y.
,
Hu
,
X.
, and
Guardiola
,
G.
,
2020
, “
Analysis of Electric Vehicles Charging Behavior Patterns With Function Principal Component Analysis Approach
,”
J. Adv. Transp.
,
23
(
9
), pp.
1
12
.
38.
Chen
,
K.
,
Zheng
,
F.
,
Jiang
,
J.
,
Zhang
,
W.
,
Jiang
,
Y.
, and
Chen
,
K.
,
2017
, “
Practical Failure Recognition Model of Lithium-Ion Batteries Based on Partial Charging Process
,”
Energy
,
138
(
1
), pp.
1199
1208
.
39.
Sui
,
X.
,
He
,
S.
,
Vilsen
,
B.
,
Meng
,
J.
,
Teodorescu
,
R.
, and
Stroe
,
D.-I.
,
2021
, “
A Review of Non-probabilistic Machine Learning-Based State of Health Estimation Techniques for Lithium-Ion Battery
,”
Appl. Energy
,
300
(
3
), p.
117346
.
40.
Xu
,
S.
,
Hu
,
J.
,
Cheng
,
J.
, and
Egardt
,
B.
,
2015
, “
Battery Health Prognosis for Electric Vehicles Using Sample Entropy and Sparse Bayesian Predictive Modeling
,”
IEEE Trans. Ind. Electron.
,
63
(
4
), pp.
1
11
.
41.
Hu
,
X.
,
Li
,
S. E.
, and
Yang
,
Y.
,
2017
, “
Advanced Machine Learning Approach for Lithium-Ion Battery State Estimation in Electric Vehicles
,”
IEEE Trans. Transp. Electrif.
,
2
(
2
), pp.
140
149
.
42.
Fan
,
L.
,
Ma
,
J.
,
Tian
,
J.
,
Li
,
T.
, and
Wang
,
H.
,
2021
, “
Comparative Study of Isolation Forest and LOF Algorithm in Anomaly Detection of Data Mining
,”
International Conference on Big Data, Artificial Intelligence and Risk Management
,
Shanghai, China
,
Nov. 5
, pp.
1
5
.
43.
Al Hasan
,
M.
,
Chaoji
,
V.
,
Salem
,
S.
, and
Zaki
,
M. J.
,
2020
, “
200 Robust Partitional Clustering by Outlier and Density Insensitive Seeding
,”
Pattern Recognit. Lett.
,
30
(
11
), pp.
994
1002
.
44.
Jiang
,
J.
,
Cong
,
X.
,
Li
,
S.
,
Zhang
,
C.
,
Zhang
,
W.
, and
Jiang
,
Y.
,
2021
, “
A Hybrid Signal-Based Fault Diagnosis Method for Lithium-Ion Batteries in Electric Vehicles
,”
IEEE Access
,
99
, pp.
1
11
.
You do not currently have access to this content.