Abstract

In order to study the degradation mechanism of lithium-ion batteries subjected to vibration aging in actual use and also to achieve capacity estimation and prediction, the following work has been done: First, the road spectra of two commonly seen domestic roads in China are collected in the field and modeled on a six degrees-of-freedom motion platform as the vibration working conditions of the batteries. Second, aging cycle experiments were conducted on batteries with different placement directions (X-axis direction, Y-axis direction, and Z-axis direction) under two vibration conditions, and the effects of experimental conditions on the decline results were analyzed; third, quantification of battery decline patterns to analyze the main causes of battery capacity decline; and then, through further analysis of the two vibration conditions on the lithium battery by in-situ and ex-situ methods as its internal mechanisms. Finally, the quantified results were input into the generative adversarial networks and long-term and short-term memory network prediction model to predict the capacity, and the errors of 20 predictions are as follows: the average values are 2.8561% for Group X, 2.7997% for Group Y, 3.0182% for Group Z, and 2.9478% for Group N, which meet the requirements of battery management system estimation. This paper provides a basis for the study of aging mechanism and capacity estimation of lithium-ion batteries under vibration aging conditions, which helps manufacturers to package batteries more rationally to extend battery life and develop battery management system (BMS)-related strategies.

References

1.
Fredrik
,
L.
,
Andersson
,
P.
,
Blomqvist
,
P.
,
Loren
,
A.
, and
Mellander
,
B. E.
,
2014
, “
Characteristics of Lithium-Ion Batteries During Fire Tests
,”
J. Power Sources
,
271
, pp.
414
420
.
2.
Berg
,
H.
, and
Zackrisson
,
M.
,
2019
, “
Perspectives on Environmental and Cost Assessment of Lithium Metal Negative Electrodes in Electric Vehicle Traction Batteries
,”
J. Power Sources
,
415
, pp.
83
90
.
3.
Hannan
,
M. A.
,
Hoque
,
M. M.
,
Mohamed
,
A.
, and
Ayob
,
A.
,
2017
, “
Review of Energy Storage Systems for Electric Vehicle Applications: Issues and Challenges
,”
Renew. Sustain. Energy Rev.
,
69
, pp.
771
789
.
4.
Guo
,
F.
,
Hu
,
G. D.
,
Zhou
,
P. K.
,
Hu
,
J. Y.
, and
Sai
,
Y. H.
,
2020
, “
State of Charge Estimation in Electric Vehicles at Various Ambient Temperatures
,”
Int. J. Energy Res.
,
44
(
9
), pp.
7357
7370
.
5.
Ziat
,
K.
,
Louahlia
,
H.
,
Petrone
,
R.
,
Gualous
,
H.
, and
Schaetzel
,
P.
,
2021
, “
Experimental Investigation on the Impact of the Battery Charging/Discharging Current Ratio on the Operating Temperature and Heat Generation
,”
Int. J. Energy Res.
,
45
(
11
), pp.
16754
16768
.
6.
Berg
,
P.
,
Spielbauer
,
M.
,
Tillinger
,
M.
,
Merkel
,
M.
,
Schoenfuss
,
M.
,
Bohlen
,
O.
, and
Jossen
,
A.
,
2020
, “
Durability of Lithium-Ion 18650 Cells Under Random Vibration Load With Respect to the Inner Cell Design
,”
J. Energy Storage
,
31
, p.
101499
.
7.
Lee
,
P. Y.
,
Park
,
S.
,
Cho
,
I.
, and
Kim
,
J.
,
2021
, “
Vibration-Based Degradation Effect in Rechargeable Lithium Ion Batteries Having Different Cathode Materials for Railway Vehicle Application
,”
Eng. Fail. Anal.
,
124
, p.
105334
.
8.
Zhang
,
L. J.
,
Mu
,
Z. Q.
, and
Gao
,
X. Y.
,
2018
, “
Coupling Analysis and Performance Study of Commercial 18650 Lithium-Ion Batteries Under Conditions of Temperature and Vibration
,”
Energies
,
11
(
10
), pp.
1
27
.
9.
Pastor-Fernandez
,
C.
,
Uddin
,
K.
,
Chouchelamane
,
G. H.
,
Widanage
,
W. D.
, and
Marco
,
J.
,
2017
, “
A Comparison Between Electrochemical Impedance Spectroscopy and Incremental Capacity-Differential Voltage as Li-Ion Diagnostic Techniques to Identify and Quantify the Effects of Degradation Modes Within Battery Management Systems
,”
J. Power Sources
,
360
, pp.
301
318
.
10.
Zhang
,
G. X.
,
Wei
,
X. Z.
,
Han
,
G. S.
,
Dai
,
H. F.
,
Zhu
,
J. G.
,
Wang
,
X. Y.
,
Tang
,
X.
, and
Ye
,
J. P.
,
2021
, “
Lithium Plating on the Anode for Lithium-Ion Batteries During Long-Term low Temperature Cycling
,”
J. Power Sources
,
484
(
2
), p.
229312
.
11.
Zhu
,
J. G.
,
Knapp
,
M.
,
Liu
,
X. Y.
,
Yan
,
P.
,
Dai
,
H. F.
,
Wei
,
X. Z.
, and
Ehrenberg
,
H.
,
2020
, “
Low Temperature Separating Lithium-Ion Battery Interfacial Polarization Based on Distribution of Relaxation Times (DRT) of Impedance
,”
IEEE Trans. Transp. Electrification
,
7
(
2
), pp.
410
421
.
12.
Xia
,
Q.
,
Yang
,
D. Z.
,
Wang
,
Z. L.
,
Ren
,
Y.
,
Sun
,
B.
,
Feng
,
Q.
, and
Qian
,
C.
,
2020
, “
Multiphysical Modeling for Life Analysis of Lithium-Ion Battery Pack in Electric Vehicles
,”
Renew. Sustain. Energy Rev.
,
131
, p.
109993
.
13.
Chehade
,
A. A.
, and
Hussein
,
A. A.
,
2021
, “
A Multioutput Convolved Gaussian Process for Capacity Forecasting of Li-Ion Battery Cells
,”
IEEE Trans. Power Electron.
,
37
(
1
), pp.
896
909
.
14.
Guo
,
P. Y.
,
Cheng
,
Z.
, and
Yang
,
L.
,
2019
, “
A Data-Driven Remaining Capacity Estimation Approach for Lithium-Ion Batteries Based on Charging Health Feature Extraction
,”
J. Power Sources
,
412
, pp.
442
450
.
15.
Nascimento
,
R. G.
,
Corbetta
,
M.
,
Kulkarni
,
C. S.
, and
Viana
,
F. A. C.
,
2021
, “
Hybrid Physics-Informed Neural Networks for Lithium-Ion Battery Modeling and Prognosis
,”
J. Power Sources
,
513
, p.
230526
.
16.
Li
,
W. H.
,
Jiao
,
Z. P.
,
Xiao
,
Q.
,
Meng
,
J. H.
,
Mu
,
Y. F.
,
Jia
,
H. J.
,
Teodorescu
,
R.
, and
Blaabjerg
,
F.
,
2019
, “
A Study on Performance Characterization Considering Six-Degree-of-Freedom Vibration Stress and Aging Stress for Electric Vehicle Battery Under Driving Conditions
,”
IEEE Access
,
7
, pp.
112180
112190
.
17.
Xiong
,
R.
,
Pan
,
Y.
,
Shen
,
W. X.
,
Li
,
H. L.
, and
Sun
,
F. C.
,
2020
, “
Lithium-Ion Battery Aging Mechanisms and Diagnosis Method for Automotive Applications: Recent Advances and Perspectives
,”
Renew. Sustain. Energy Rev.
,
131
, p.
110048
.
18.
Merla
,
Y.
,
Wu
,
B.
,
Yufit
,
V.
,
Brandon
,
N. P.
,
Martinez-Botas
,
R. F.
, and
Offer
,
G. J.
,
2016
, “
Extending Battery Life: A Low-Cost Practical Diagnostic Technique for Lithium-Ion Batteries
,”
J. Power Sources
,
331
, pp.
224
231
.
19.
Uddin
,
K.
,
Perera
,
S.
,
Widanage
,
W. D.
,
Somerville
,
L.
, and
Marco
,
J.
,
2016
, “
Characterising Lithium-Ion Battery Degradation Through the Identification and Tracking of Electrochemical Battery Model Parameters
,”
Batteries
,
2
(
2
), p.
13
.
20.
Sarasketa-Zabala
,
E.
,
Aguesse
,
F.
,
Villarreal
,
I.
,
Rodriguez-Martinez
,
L. M.
,
Lopez
,
C. M.
, and
Kubiak
,
P.
,
2015
, “
Understanding Lithium Inventory Loss and Sudden Performance Fade in Cylindrical Cells During Cycling With Deep-Discharge Steps
,”
J. Phys. Chem. C
,
119
(
2
), pp.
896
906
.
21.
Emets
,
V. V.
,
Gavrilin
,
I. M.
,
Kulova
,
T. L.
,
Skundin
,
A. M.
,
Sharafutdinova
,
A. M.
, and
Gavrilov
,
S. A.
,
2021
, “
Dynamics of Changes in the Kinetic Parameters of Germanium Nanowires During Lithiation/Delithiation in a Wide Temperature Range
,”
J. Electroanal. Chem.
,
902
, p.
115811
.
22.
Dubarry
,
M.
,
Truchot
,
C.
, and
Liaw
,
B. Y.
,
2012
, “
Synthesize Battery Degradation Modes via a Diagnostic and Prognostic Model
,”
J. Power Sources
,
219
(
12
), pp.
204
216
.
You do not currently have access to this content.